Suppr超能文献

原位检测S-谷胱甘肽化和S-亚硝基化蛋白的实验方案。

Protocols for the detection of s-glutathionylated and s-nitrosylated proteins in situ.

作者信息

Aesif Scott W, Janssen-Heininger Yvonne M W, Reynaert Niki L

机构信息

Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont, USA.

出版信息

Methods Enzymol. 2010;474:289-96. doi: 10.1016/S0076-6879(10)74017-9. Epub 2010 Jun 20.

Abstract

The oxidation of protein cysteine residues represents significant posttranslational modifications that impact a wide variety of signal transduction cascades and diverse biological processes. Oxidation of cysteines occurs through reactions with reactive oxygen as well as nitrogen species. These oxidative events can lead to irreversible modifications, such as the formation of sulfonic acids, or manifest as reversible modifications such as the conjugation of glutathione with the cysteine moiety, a process termed S-glutathionylation (also referred to as S-glutathiolation, or protein mixed disulfides). Similarly, S-nitrosothiols can also react with the thiol group in a process known as S-nitrosylation (or S-nitrosation). It is the latter two events that have recently come to the forefront of cellular biology through their ability to reversibly impact numerous cellular processes. Herein we describe two protocols for the detection of S-glutathionylated or S-nitrosylated proteins in situ. The protocol for the detection of S-glutathionylated proteins relies on the catalytic specificity of glutaredoxin-1 for the reduction of S-glutathionylated proteins. The protocol for the detection of S-nitrosylated proteins represents a modification of the previously described biotin switch protocol, which relies on ascorbate in the presence of chelators to decompose S-nitrosylated proteins. These techniques can be applied in situ to elucidate which compartments in tissues are affected in diseased states whose underlying pathologies are thought to represent a redox imbalance.

摘要

蛋白质半胱氨酸残基的氧化是重要的翻译后修饰,会影响多种信号转导级联反应和不同的生物学过程。半胱氨酸的氧化通过与活性氧以及氮物种的反应发生。这些氧化事件可导致不可逆修饰,如磺酸的形成,或表现为可逆修饰,如谷胱甘肽与半胱氨酸部分的结合,这一过程称为S-谷胱甘肽化(也称为S-谷胱硫醇化或蛋白质混合二硫键)。同样,S-亚硝基硫醇也可通过一种称为S-亚硝基化(或S-亚硝化)的过程与硫醇基团反应。正是后两种事件最近通过其可逆影响众多细胞过程的能力而成为细胞生物学的前沿。在此,我们描述两种原位检测S-谷胱甘肽化或S-亚硝基化蛋白质的方法。检测S-谷胱甘肽化蛋白质的方法依赖于谷氧还蛋白-1对S-谷胱甘肽化蛋白质还原的催化特异性。检测S-亚硝基化蛋白质的方法是对先前描述的生物素开关方法的改进,该方法依赖于在螯合剂存在下抗坏血酸分解S-亚硝基化蛋白质。这些技术可原位应用,以阐明在潜在病理被认为代表氧化还原失衡的疾病状态下,组织中的哪些区室受到影响。

相似文献

1
Protocols for the detection of s-glutathionylated and s-nitrosylated proteins in situ.
Methods Enzymol. 2010;474:289-96. doi: 10.1016/S0076-6879(10)74017-9. Epub 2010 Jun 20.
2
Identification of S-nitrosylated proteins in plants.
Methods Enzymol. 2008;440:283-93. doi: 10.1016/S0076-6879(07)00818-X.
3
Generation and detection of S-nitrosothiols.
Methods Mol Biol. 2008;476:217-29. doi: 10.1007/978-1-59745-129-1_15.
4
Dysregulation of the glutaredoxin/glutathionylation redox axis in lung diseases.
Am J Physiol Cell Physiol. 2020 Feb 1;318(2):C304-C327. doi: 10.1152/ajpcell.00410.2019. Epub 2019 Nov 6.
5
Proteomic analysis of S-nitrosylated proteins in potato plant.
Physiol Plant. 2013 Jul;148(3):371-86. doi: 10.1111/j.1399-3054.2012.01684.x. Epub 2012 Sep 17.
6
S-nitrosation versus S-glutathionylation of protein sulfhydryl groups by S-nitrosoglutathione.
Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):930-9. doi: 10.1089/ars.2005.7.930.
7
Measurement of protein S-nitrosylation during cell signaling.
Methods Enzymol. 2008;440:231-42. doi: 10.1016/S0076-6879(07)00814-2.
8
Rocket fuel for the quantification of S-nitrosothiols. Highly specific reduction of S-nitrosothiols to thiols by methylhydrazine.
Free Radic Res. 2013 Feb;47(2):104-15. doi: 10.3109/10715762.2012.744836. Epub 2012 Dec 5.
9
The biotin switch method for the detection of S-nitrosylated proteins.
Sci STKE. 2001 Jun 12;2001(86):pl1. doi: 10.1126/stke.2001.86.pl1.
10
Site specific identification of endogenous S-nitrosocysteine proteomes.
J Proteomics. 2013 Oct 30;92:195-203. doi: 10.1016/j.jprot.2013.05.033. Epub 2013 Jun 5.

引用本文的文献

1
S100A1's single cysteine is an indispensable redox switch for the protection against diastolic calcium waves in cardiomyocytes.
Am J Physiol Heart Circ Physiol. 2024 Jul 1;327(1):H000. doi: 10.1152/ajpheart.00634.2023. Epub 2024 May 31.
2
Using Redox Proteomics to Gain New Insights into Neurodegenerative Disease and Protein Modification.
Antioxidants (Basel). 2024 Jan 20;13(1):127. doi: 10.3390/antiox13010127.
3
Redox-dependent Igfbp2 signaling controls Brca1 DNA damage response to govern neural stem cell fate.
Nat Commun. 2023 Jan 27;14(1):444. doi: 10.1038/s41467-023-36174-z.
4
Characterization of cellular oxidative stress response by stoichiometric redox proteomics.
Am J Physiol Cell Physiol. 2021 Feb 1;320(2):C182-C194. doi: 10.1152/ajpcell.00040.2020. Epub 2020 Dec 2.
5
Redox Regulation Glutaredoxin-1 and Protein -Glutathionylation.
Antioxid Redox Signal. 2020 Apr 1;32(10):677-700. doi: 10.1089/ars.2019.7963. Epub 2020 Jan 23.
6
Isotopically Labeled Clickable Glutathione to Quantify Protein S-Glutathionylation.
Chembiochem. 2020 Mar 16;21(6):853-859. doi: 10.1002/cbic.201900528. Epub 2019 Oct 29.
7
Post-translational S-glutathionylation of cofilin increases actin cycling during cocaine seeking.
PLoS One. 2019 Sep 24;14(9):e0223037. doi: 10.1371/journal.pone.0223037. eCollection 2019.
8
Proteomic Methods to Evaluate NOX-Mediated Redox Signaling.
Methods Mol Biol. 2019;1982:497-515. doi: 10.1007/978-1-4939-9424-3_30.
10
Protein Thiol Redox Signaling in Monocytes and Macrophages.
Antioxid Redox Signal. 2016 Nov 20;25(15):816-835. doi: 10.1089/ars.2016.6697. Epub 2016 Jul 13.

本文引用的文献

1
Protein denitrosylation: enzymatic mechanisms and cellular functions.
Nat Rev Mol Cell Biol. 2009 Oct;10(10):721-32. doi: 10.1038/nrm2764. Epub 2009 Sep 9.
4
Detection of protein S-nitrosylation with the biotin-switch technique.
Free Radic Biol Med. 2009 Jan 15;46(2):119-26. doi: 10.1016/j.freeradbiomed.2008.09.034. Epub 2008 Oct 17.
5
Redox-based regulation of signal transduction: principles, pitfalls, and promises.
Free Radic Biol Med. 2008 Jul 1;45(1):1-17. doi: 10.1016/j.freeradbiomed.2008.03.011. Epub 2008 Mar 27.
6
Molecular mechanisms and potential clinical significance of S-glutathionylation.
Antioxid Redox Signal. 2008 Mar;10(3):445-73. doi: 10.1089/ars.2007.1716.
7
S-glutathionylation in protein redox regulation.
Free Radic Biol Med. 2007 Sep 15;43(6):883-98. doi: 10.1016/j.freeradbiomed.2007.06.014. Epub 2007 Jun 15.
8
Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress.
Curr Opin Pharmacol. 2007 Aug;7(4):381-91. doi: 10.1016/j.coph.2007.06.003. Epub 2007 Jul 26.
9
In situ detection of S-glutathionylated proteins following glutaredoxin-1 catalyzed cysteine derivatization.
Biochim Biophys Acta. 2006 Mar;1760(3):380-7. doi: 10.1016/j.bbagen.2006.01.006. Epub 2006 Feb 20.
10
Thiol redox control via thioredoxin and glutaredoxin systems.
Biochem Soc Trans. 2005 Dec;33(Pt 6):1375-7. doi: 10.1042/BST0331375.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验