Biophysics Program, Institute for Physical Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12523-8. doi: 10.1073/pnas.1003533107. Epub 2010 Jul 1.
RNA synthesis, carried out by DNA-dependent RNA polymerase (RNAP) in a process called transcription, involves several stages. In bacteria, transcription initiation starts with promoter recognition and binding of RNAP holoenzyme, resulting in the formation of the closed (R.P(c)) RNAP-promoter DNA complex. Subsequently, a transition to the open R.P(o) complex occurs, characterized by separation of the promoter DNA strands in an approximately 12 base-pair region to form the transcription bubble. Using coarse-grained self-organized polymer models of Thermus aquatics RNAP holoenzyme and promoter DNA complexes, we performed Brownian dynamics simulations of the R.P(c) --> R.P(o) transition. In the fast trajectories, unwinding of the promoter DNA begins by local melting around the -10 element, which is followed by sequential unzipping of DNA till the +2 site. The R.P(c) --> R.P(o) transition occurs in three steps. In step I, dsDNA melts and the nontemplate strand makes stable interactions with RNAP. In step II, DNA scrunches into RNA polymerase and the downstream base pairs sequentially open to form the transcription bubble, which results in strain build up. Subsequently, downstream dsDNA bending relieves the strain as R.P(o) forms. Entry of the dsDNA into the active-site channel of RNAP requires widening of the channel, which occurs by a swing mechanism involving transient movements of a subdomain of the beta subunit caused by steric repulsion with the DNA template strand. If premature local melting away from the -10 element occurs first then the transcription bubble formation is slow involving reformation of the opened base pairs and subsequent sequential unzipping as in the fast trajectories.
RNA 合成是由 DNA 依赖性 RNA 聚合酶(RNAP)在转录过程中进行的,涉及多个阶段。在细菌中,转录起始于启动子识别和全酶 RNAP 的结合,导致形成封闭的(R.P(c))RNAP-启动子 DNA 复合物。随后,发生从封闭的 R.P(c)到开放的 R.P(o)复合物的转变,其特征在于启动子 DNA 链在大约 12 个碱基对的区域中分离,形成转录泡。使用嗜热水生菌 RNAP 全酶和启动子 DNA 复合物的粗粒自组织聚合物模型,我们对 R.P(c)到 R.P(o)的转变进行了布朗动力学模拟。在快速轨迹中,启动子 DNA 的解旋始于-10 元件周围的局部熔化,随后 DNA 依次解旋,直到+2 位点。R.P(c)到 R.P(o)的转变分三步进行。在第一步中,dsDNA 熔化,非模板链与 RNAP 形成稳定的相互作用。在第二步中,DNA 缠绕在 RNA 聚合酶中,下游碱基对依次打开形成转录泡,从而导致应变的积累。随后,下游 dsDNA 的弯曲释放应变,形成 R.P(o)。dsDNA 进入 RNAP 的活性位点通道需要通道变宽,这通过涉及亚基β亚基的瞬态运动的摆动机制发生,这是由 DNA 模板链的空间排斥引起的。如果首先发生远离-10 元件的过早局部熔化,则转录泡的形成较慢,涉及已打开碱基对的重新形成以及随后的顺序解旋,就像在快速轨迹中一样。