Department of Physics, The University of Texas at Austin, Austin, 78712, USA.
Department of Chemistry, The University of Texas at Austin, Austin, 78712, USA.
Nat Commun. 2021 Oct 7;12(1):5865. doi: 10.1038/s41467-021-26167-1.
Condensation of hundreds of mega-base-pair-long human chromosomes in a small nuclear volume is a spectacular biological phenomenon. This process is driven by the formation of chromosome loops. The ATP consuming motor, condensin, interacts with chromatin segments to actively extrude loops. Motivated by real-time imaging of loop extrusion (LE), we created an analytically solvable model, predicting the LE velocity and step size distribution as a function of external load. The theory fits the available experimental data quantitatively, and suggests that condensin must undergo a large conformational change, induced by ATP binding, bringing distant parts of the motor to proximity. Simulations using a simple model confirm that the motor transitions between an open and a closed state in order to extrude loops by a scrunching mechanism, similar to that proposed in DNA bubble formation during bacterial transcription. Changes in the orientation of the motor domains are transmitted over ~50 nm, connecting the motor head and the hinge, thus providing an allosteric basis for LE.
数百兆碱基对长的人类染色体在小核体积内浓缩是一种壮观的生物学现象。这个过程是由染色体环的形成驱动的。消耗 ATP 的马达,凝聚素,与染色质片段相互作用,主动推出环。受实时环挤压成像 (LE) 的启发,我们创建了一个可分析求解的模型,预测 LE 速度和步长分布作为外部负载的函数。该理论定量拟合了现有的实验数据,并表明凝聚素必须经历一个由 ATP 结合诱导的大构象变化,将马达的远部分拉近。使用简单模型的模拟证实,为了通过挤压机制挤出环,马达在开放和关闭状态之间转换,类似于在细菌转录过程中 DNA 泡形成中提出的机制。马达结构域方向的变化在 50nm 左右传播,连接马达头部和铰链,从而为 LE 提供了一个变构基础。