Mickler Moritz, Dima Ruxandra I, Dietz Hendrik, Hyeon Changbong, Thirumalai D, Rief Matthias
Physik Department E22, Technische Universität München, James-Franck-Strasse, D-85748 Garching, Germany.
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20268-73. doi: 10.1073/pnas.0705458104. Epub 2007 Dec 13.
Nanomanipulation of biomolecules by using single-molecule methods and computer simulations has made it possible to visualize the energy landscape of biomolecules and the structures that are sampled during the folding process. We use simulations and single-molecule force spectroscopy to map the complex energy landscape of GFP that is used as a marker in cell biology and biotechnology. By engineering internal disulfide bonds at selected positions in the GFP structure, mechanical unfolding routes are precisely controlled, thus allowing us to infer features of the energy landscape of the wild-type GFP. To elucidate the structures of the unfolding pathways and reveal the multiple unfolding routes, the experimental results are complemented with simulations of a self-organized polymer (SOP) model of GFP. The SOP representation of proteins, which is a coarse-grained description of biomolecules, allows us to perform forced-induced simulations at loading rates and time scales that closely match those used in atomic force microscopy experiments. By using the combined approach, we show that forced unfolding of GFP involves a bifurcation in the pathways to the stretched state. After detachment of an N-terminal alpha-helix, unfolding proceeds along two distinct pathways. In the dominant pathway, unfolding starts from the detachment of the primary N-terminal beta-strand, while in the minor pathway rupture of the last, C-terminal beta-strand initiates the unfolding process. The combined approach has allowed us to map the features of the complex energy landscape of GFP including a characterization of the structures, albeit at a coarse-grained level, of the three metastable intermediates.
利用单分子方法和计算机模拟对生物分子进行纳米操作,使得可视化生物分子的能量景观以及折叠过程中采样的结构成为可能。我们使用模拟和单分子力谱来绘制绿色荧光蛋白(GFP)的复杂能量景观,GFP在细胞生物学和生物技术中用作标记物。通过在GFP结构的选定位置设计内部二硫键,可以精确控制机械展开途径,从而使我们能够推断野生型GFP能量景观的特征。为了阐明展开途径的结构并揭示多种展开途径,实验结果辅以GFP的自组织聚合物(SOP)模型模拟。蛋白质的SOP表示是对生物分子的粗粒度描述,使我们能够在与原子力显微镜实验中使用的加载速率和时间尺度紧密匹配的条件下进行强制诱导模拟。通过使用这种组合方法,我们表明GFP的强制展开在通向伸展状态的途径中涉及一个分支。在N端α螺旋脱离后,展开沿着两条不同的途径进行。在主要途径中,展开从初级N端β链的脱离开始,而在次要途径中,最后一个C端β链的断裂启动展开过程。这种组合方法使我们能够绘制GFP复杂能量景观的特征,包括对三种亚稳中间体结构的表征,尽管是在粗粒度水平上。