School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13503-8. doi: 10.1073/pnas.1002506107. Epub 2010 Jul 13.
Long-term experience through development and evolution and shorter-term training in adulthood have both been suggested to contribute to the optimization of visual functions that mediate our ability to interpret complex scenes. However, the brain plasticity mechanisms that mediate the detection of objects in cluttered scenes remain largely unknown. Here, we combine behavioral and functional MRI (fMRI) measurements to investigate the human-brain mechanisms that mediate our ability to learn statistical regularities and detect targets in clutter. We show two different routes to visual learning in clutter with discrete brain plasticity signatures. Specifically, opportunistic learning of regularities typical in natural contours (i.e., collinearity) can occur simply through frequent exposure, generalize across untrained stimulus features, and shape processing in occipitotemporal regions implicated in the representation of global forms. In contrast, learning to integrate discontinuities (i.e., elements orthogonal to contour paths) requires task-specific training (bootstrap-based learning), is stimulus-dependent, and enhances processing in intraparietal regions implicated in attention-gated learning. We propose that long-term experience with statistical regularities may facilitate opportunistic learning of collinear contours, whereas learning to integrate discontinuities entails bootstrap-based training for the detection of contours in clutter. These findings provide insights in understanding how long-term experience and short-term training interact to shape the optimization of visual recognition processes.
长期的发展和进化经验以及成年期的短期训练都被认为有助于优化介导我们解释复杂场景能力的视觉功能。然而,介导在杂乱场景中检测物体的大脑可塑性机制在很大程度上仍不清楚。在这里,我们结合行为和功能磁共振成像(fMRI)测量来研究介导我们学习统计规律和在杂乱中检测目标的大脑机制。我们展示了在杂乱中有两种不同的视觉学习途径,具有离散的大脑可塑性特征。具体来说,通过频繁暴露,机会主义地学习自然轮廓中的典型规则(即共线性)可以简单地发生,它可以跨未训练的刺激特征概括,并在枕颞区域中形成处理,该区域与全局形式的表示有关。相比之下,学习整合不连续性(即与轮廓路径正交的元素)需要特定于任务的训练(基于引导的学习),这是刺激依赖性的,并且增强了与注意力门控学习相关的顶内区域的处理。我们提出,长期的统计规律经验可能有助于共线性轮廓的机会主义学习,而学习整合不连续性则需要基于引导的训练来检测杂乱中的轮廓。这些发现为理解长期经验和短期训练如何相互作用以塑造视觉识别过程的优化提供了见解。