Suppr超能文献

半月板和软骨在无约束压缩下表现出明显的组织内应变分布。

Meniscus and cartilage exhibit distinct intra-tissue strain distributions under unconfined compression.

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-4038, United States.

出版信息

Osteoarthritis Cartilage. 2010 Oct;18(10):1291-9. doi: 10.1016/j.joca.2010.05.020. Epub 2010 Jul 13.

Abstract

OBJECTIVE

To examine the functional behavior of the surface layer of the meniscus by investigating depth-varying compressive strains during unconfined compression.

DESIGN

Pairs of meniscus and articular cartilage explants (n=12) site-matched at the tibial surfaces were subjected to equilibrium unconfined compression at 5, 10, 15, and 20% compression under fluorescence imaging. Two-dimensional (2D) deformations were tracked using digital image correlation (DIC). For each specimen, local compressive engineering strains were determined in 200 μm layers through the depth of the tissue. In samples with sharp strain transitions, bilinear regressions were used to characterize the surface and interior tissue compressive responses.

RESULTS

Meniscus and cartilage exhibited distinct depth-dependent strain profiles during unconfined compression. All cartilage explants had elevated compressive engineering strains near the surface, consistent with previous reports. In contrast, half of the meniscus explants tested had substantially stiffer surface layers, as indicated by surface engineering strains that were ∼20% of the applied compression. In the remaining samples, surface and interior engineering strains were comparable. 2D Green's strain maps revealed highly heterogeneous compressive and shear strains throughout the meniscus explants. In cartilage, the maximum shear strain appeared to be localized at 100-250 μm beneath the articular surface.

CONCLUSIONS

Meniscus was characterized by highly heterogeneous strains during compression. In contrast to cartilage, which consistently had a compliant surface region, meniscal explants were either substantially stiffer near the surface or had comparable compressive stiffness through the depth. The relatively compliant interior may allow the meniscus to maintain a consistent surface contour while deforming during physiologic loading.

摘要

目的

通过研究无约束压缩过程中深度变化的压缩应变,来考察半月板表面层的功能行为。

设计

将配对的半月板和关节软骨样本(n=12)在胫骨表面进行位点匹配,在荧光成像下以 5%、10%、15%和 20%的压缩比进行平衡无约束压缩。使用数字图像相关(DIC)跟踪二维(2D)变形。对于每个标本,通过组织深度的 200 μm 层确定局部压缩工程应变。在应变急剧变化的样本中,使用双线性回归来描述表面和内部组织的压缩响应。

结果

半月板和软骨在无约束压缩过程中表现出明显的深度依赖应变分布。所有软骨样本在表面附近都有较高的压缩工程应变,这与之前的报告一致。相比之下,一半的半月板样本的表面层硬度明显较高,表现为表面工程应变约为施加压缩的 20%。在其余样本中,表面和内部的工程应变相当。2D Green 应变图显示整个半月板样本中存在高度不均匀的压缩和剪切应变。在软骨中,最大剪切应变似乎集中在关节表面下 100-250 μm 处。

结论

半月板在压缩过程中表现出高度不均匀的应变。与软骨不同,软骨的表面区域始终具有柔顺性,半月板样本要么在表面附近明显更硬,要么在整个深度具有相当的压缩刚度。相对柔顺的内部可能允许半月板在生理负荷下变形时保持一致的表面轮廓。

相似文献

引用本文的文献

2
Fabricating the cartilage: recent achievements.软骨制造:近期成果
Cytotechnology. 2023 Aug;75(4):269-292. doi: 10.1007/s10616-023-00582-2. Epub 2023 May 26.
5
Multiscale Strain Transfer in Cartilage.软骨中的多尺度应变传递
Front Cell Dev Biol. 2022 Feb 4;10:795522. doi: 10.3389/fcell.2022.795522. eCollection 2022.

本文引用的文献

2
High-resolution spatial mapping of shear properties in cartilage.软骨剪切特性的高分辨率空间测绘。
J Biomech. 2010 Mar 3;43(4):796-800. doi: 10.1016/j.jbiomech.2009.10.012. Epub 2009 Nov 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验