Suppr超能文献

利用机器学习通过分子性质预测细胞色素P450抑制作用。

Harnessing machine learning to predict cytochrome P450 inhibition through molecular properties.

作者信息

Zahid Hamza, Tayara Hilal, Chong Kil To

机构信息

Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.

School of International Engineering and Science, Jeonbuk National University, Jeonju, 54896, South Korea.

出版信息

Arch Toxicol. 2024 Aug;98(8):2647-2658. doi: 10.1007/s00204-024-03756-9. Epub 2024 Apr 15.

Abstract

Cytochrome P450 enzymes are a superfamily of enzymes responsible for the metabolism of a variety of medicines and xenobiotics. Among the Cytochrome P450 family, five isozymes that include 1A2, 2C9, 2C19, 2D6, and 3A4 are most important for the metabolism of xenobiotics. Inhibition of any of these five CYP isozymes causes drug-drug interactions with high pharmacological and toxicological effects. So, the inhibition or non-inhibition prediction of these isozymes is of great importance. Many techniques based on machine learning and deep learning algorithms are currently being used to predict whether these isozymes will be inhibited or not. In this study, three different molecular or substructural properties that include Morgan, MACCS and Morgan (combined) and RDKit of the various molecules are used to train a distinct SVM model against each isozyme (1A2, 2C9, 2C19, 2D6, and 3A4). On the independent dataset, Morgan fingerprints provided the best results, while MACCS and Morgan (combined) achieved comparable results in terms of balanced accuracy (BA), sensitivity (Sn), and Mathews correlation coefficient (MCC). For the Morgan fingerprints, balanced accuracies (BA), Mathews correlation coefficients (MCC), and sensitivities (Sn) against each CYPs isozyme, 1A2, 2C9, 2C19, 2D6, and 3A4 on an independent dataset ranged between 0.81 and 0.85, 0.61 and 0.70, 0.72 and 0.83, respectively. Similarly, on the independent dataset, MACCS and Morgan (combined) fingerprints achieved competitive results in terms of balanced accuracies (BA), Mathews correlation coefficients (MCC), and sensitivities (Sn) against each CYPs isozyme, 1A2, 2C9, 2C19, 2D6, and 3A4, which ranged between 0.79 and 0.85, 0.59 and 0.69, 0.69 and 0.82, respectively.

摘要

细胞色素P450酶是一类负责多种药物和外源性物质代谢的超家族酶。在细胞色素P450家族中,包括1A2、2C9、2C19、2D6和3A4在内的五种同工酶对外源性物质的代谢最为重要。抑制这五种CYP同工酶中的任何一种都会导致具有高药理和毒理作用的药物相互作用。因此,预测这些同工酶的抑制或非抑制情况非常重要。目前,许多基于机器学习和深度学习算法的技术被用于预测这些同工酶是否会被抑制。在本研究中,使用包括摩根指纹(Morgan)、MACCS指纹以及摩根指纹与RDKit指纹组合(Morgan(combined))在内的三种不同分子或亚结构性质,针对每种同工酶(1A2、2C9、2C19、2D6和3A4)训练一个独特的支持向量机(SVM)模型。在独立数据集上,摩根指纹提供了最佳结果,而MACCS指纹和摩根指纹与RDKit指纹组合(Morgan(combined))在平衡准确率(BA)、灵敏度(Sn)和马修斯相关系数(MCC)方面取得了可比的结果。对于摩根指纹,在独立数据集上针对每种CYP同工酶1A2、2C9、2C19、2D6和3A4的平衡准确率(BA)、马修斯相关系数(MCC)和灵敏度(Sn)分别在0.81至0.85、0.61至0.70、0.72至0.83之间。同样,在独立数据集上,MACCS指纹和摩根指纹与RDKit指纹组合(Morgan(combined))针对每种CYP同工酶1A2、2C9、2C19、2D6和3A4的平衡准确率(BA)、马修斯相关系数(MCC)和灵敏度(Sn)分别在0.79至0.85、0.59至0.69、0.69至0.82之间,也取得了具有竞争力的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验