University of California, San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, MC-0747, La Jolla, CA 92093, USA.
Neuropharmacology. 2011 Jan;60(1):108-15. doi: 10.1016/j.neuropharm.2010.07.009. Epub 2010 Jul 15.
One of the major hurdles in the development of safe and effective drugs targeting G-protein coupled receptors (GPCRs) is finding ligands that are highly selective for a specific receptor subtype. Structural understanding of subtype-specific binding pocket variations and ligand-receptor interactions may greatly facilitate design of selective ligands. To gain insights into the structural basis of ligand subtype selectivity within the family of adenosine receptors (AR: A(1), A(2A), A(2B), and A(3)) we generated 3D models of all four subtypes using the recently determined crystal structure of the A(A2)AR as a template, and employing the methodology of ligand-guided receptor optimization for refinement. This approach produced 3D conformational models of AR subtypes that effectively explain binding modes and subtype selectivity for a diverse set of known AR antagonists. Analysis of the subtype-specific ligand-receptor interactions allowed identification of the major determinants of ligand selectivity, which may facilitate discovery of more efficient drug candidates.
在开发针对 G 蛋白偶联受体 (GPCR) 的安全有效的药物时,主要障碍之一是寻找对特定受体亚型具有高选择性的配体。对亚型特异性结合口袋变化和配体-受体相互作用的结构理解,可以极大地促进选择性配体的设计。为了深入了解腺苷受体 (AR:A(1)、A(2A)、A(2B)和 A(3)) 家族中配体亚型选择性的结构基础,我们使用最近确定的 A(A2)AR 晶体结构作为模板,生成了所有四种亚型的 3D 模型,并采用配体指导的受体优化方法进行了细化。这种方法产生了 AR 亚型的 3D 构象模型,有效地解释了一组不同的已知 AR 拮抗剂的结合模式和亚型选择性。对亚型特异性配体-受体相互作用的分析确定了配体选择性的主要决定因素,这可能有助于发现更有效的候选药物。