Suppr超能文献

过氧化物酶体增殖物激活受体概述。

Overview on Peroxiredoxin.

作者信息

Rhee Sue Goo

机构信息

Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea.

出版信息

Mol Cells. 2016 Jan;39(1):1-5. doi: 10.14348/molcells.2016.2368.

Abstract

Peroxiredoxins (Prxs) are a very large and highly conserved family of peroxidases that reduce peroxides, with a conserved cysteine residue, designated the "peroxidatic" Cys (CP) serving as the site of oxidation by peroxides (Hall et al., 2011; Rhee et al., 2012). Peroxides oxidize the CP-SH to cysteine sulfenic acid (CP-SOH), which then reacts with another cysteine residue, named the "resolving" Cys (CR) to form a disulfide that is subsequently reduced by an appropriate electron donor to complete a catalytic cycle. This overview summarizes the status of studies on Prxs and relates the following 10 minireviews.

摘要

过氧化物酶体增殖物激活受体(Prxs)是一个非常庞大且高度保守的过氧化物酶家族,可还原过氧化物,其具有一个保守的半胱氨酸残基,称为“过氧化物酶”半胱氨酸(CP),作为过氧化物氧化的位点(Hall等人,2011年;Rhee等人,2012年)。过氧化物将CP-SH氧化为半胱氨酸亚磺酸(CP-SOH),然后它与另一个半胱氨酸残基反应,称为“分解”半胱氨酸(CR),形成二硫键,随后由合适的电子供体将其还原以完成催化循环。本综述总结了关于Prxs的研究现状,并关联了以下10篇小型综述。

相似文献

1
Overview on Peroxiredoxin.
Mol Cells. 2016 Jan;39(1):1-5. doi: 10.14348/molcells.2016.2368.
2
Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite.
Subcell Biochem. 2007;44:83-113. doi: 10.1007/978-1-4020-6051-9_5.
3
Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H₂O₂, and protein chaperones.
Antioxid Redox Signal. 2011 Aug 1;15(3):781-94. doi: 10.1089/ars.2010.3393. Epub 2011 Mar 31.
4
Modifying the resolving cysteine affects the structure and hydrogen peroxide reactivity of peroxiredoxin 2.
J Biol Chem. 2021 Jan-Jun;296:100494. doi: 10.1016/j.jbc.2021.100494. Epub 2021 Mar 2.
5
Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine.
J Biol Chem. 2013 May 17;288(20):14170-14177. doi: 10.1074/jbc.M113.460881. Epub 2013 Mar 29.
6
The bicarbonate/carbon dioxide pair increases hydrogen peroxide-mediated hyperoxidation of human peroxiredoxin 1.
J Biol Chem. 2019 Sep 20;294(38):14055-14067. doi: 10.1074/jbc.RA119.008825. Epub 2019 Jul 30.
7
Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization.
J Mol Biol. 2010 Sep 10;402(1):194-209. doi: 10.1016/j.jmb.2010.07.022. Epub 2010 Jul 17.
8
Differential Kinetics of Two-Cysteine Peroxiredoxin Disulfide Formation Reveal a Novel Model for Peroxide Sensing.
Biochemistry. 2018 Jun 19;57(24):3416-3424. doi: 10.1021/acs.biochem.8b00188. Epub 2018 Mar 30.
9
Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins.
Antioxid Redox Signal. 2011 Aug 1;15(3):795-815. doi: 10.1089/ars.2010.3624. Epub 2011 Apr 20.
10
Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols.
Chem Rev. 2019 Oct 9;119(19):10829-10855. doi: 10.1021/acs.chemrev.9b00371. Epub 2019 Sep 9.

引用本文的文献

3
Identification of () Genes from Pepper Fruits: Involvement in Ripening and Modulation by Nitric Oxide (NO).
Antioxidants (Basel). 2025 Jul 2;14(7):817. doi: 10.3390/antiox14070817.
4
Cysteine sulfinic acid and sulfinylated peptides.
RSC Chem Biol. 2025 May 9. doi: 10.1039/d5cb00040h.
7
Peroxiredoxin-4, a marker of systemic oxidative stress, is associated with incident heart failure.
Eur J Heart Fail. 2025 May;27(5):905-911. doi: 10.1002/ejhf.3653. Epub 2025 Apr 6.
8
Fused oxazepine-naphthoquinones as novel cytotoxic agents with diverse modes of action in yeast.
Heliyon. 2024 Dec 10;10(24):e41105. doi: 10.1016/j.heliyon.2024.e41105. eCollection 2024 Dec 30.

本文引用的文献

1
The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction.
Mol Cells. 2016 Jan;39(1):65-71. doi: 10.14348/molcells.2016.2349. Epub 2016 Jan 25.
2
Multiple Roles of Peroxiredoxins in Inflammation.
Mol Cells. 2016 Jan;39(1):60-4. doi: 10.14348/molcells.2016.2341. Epub 2016 Jan 25.
3
Peroxiredoxins in Regulation of MAPK Signalling Pathways; Sensors and Barriers to Signal Transduction.
Mol Cells. 2016 Jan;39(1):40-5. doi: 10.14348/molcells.2016.2327. Epub 2016 Jan 25.
4
Microbial 2-Cys Peroxiredoxins: Insights into Their Complex Physiological Roles.
Mol Cells. 2016 Jan;39(1):31-9. doi: 10.14348/molcells.2016.2326. Epub 2016 Jan 25.
5
Kinetic Approaches to Measuring Peroxiredoxin Reactivity.
Mol Cells. 2016 Jan;39(1):26-30. doi: 10.14348/molcells.2016.2325. Epub 2016 Jan 25.
6
Peroxiredoxins and the Regulation of Cell Death.
Mol Cells. 2016 Jan;39(1):72-6. doi: 10.14348/molcells.2016.2351. Epub 2016 Jan 25.
7
Distribution and Features of the Six Classes of Peroxiredoxins.
Mol Cells. 2016 Jan;39(1):53-9. doi: 10.14348/molcells.2016.2330. Epub 2016 Jan 25.
8
Utilizing Natural and Engineered Peroxiredoxins As Intracellular Peroxide Reporters.
Mol Cells. 2016 Jan;39(1):46-52. doi: 10.14348/molcells.2016.2328. Epub 2016 Jan 25.
10
Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal.
Mol Cells. 2016 Jan;39(1):6-19. doi: 10.14348/molcells.2016.2323. Epub 2016 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验