Center for Exercise Science, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
J Physiol. 2010 Sep 15;588(Pt 18):3551-66. doi: 10.1113/jphysiol.2010.194035. Epub 2010 Jul 19.
Nitric oxide (NO) induces mitochondrial biogenesis in skeletal muscle cells via upregulation of the peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α). Further, we have shown that nitric oxide interacts with the metabolic sensor enzyme, AMPK. Therefore, we tested the hypothesis that nitric oxide and AMPK act synergistically to upregulate PGC-1α mRNA expression and stimulate mitochondrial biogenesis in culture. L6 myotubes treated with nitric oxide donors, S-nitroso-N-penicillamine (SNAP, 25 μM) or diethylenetriamine-NONO (DETA-NO, 50 μM), exhibited elevated AMPK phosphorylation, PGC-1α mRNA and protein, and basal and uncoupled mitochondrial respiration (P < 0.05). Pre-treatment of cultures with the AMPK inhibitor, Compound C, prevented these effects. Knockdown of AMPKα1 in L6 myotubes using siRNA reduced AMPKα protein content and prevented upregulation of PGC-1α mRNA by DETA-NO. Meanwhile, siRNA knockdown of AMPKα2 had no effect on total AMPKα protein content or PGC-1α mRNA. These results suggest that NO effects on PGC-1α expression are mediated by AMPKα1. Paradoxically, we found that the AMPK-activating compound, AICAR, induced NO release from L6 myotubes, and that AICAR-induced upregulation of PGC-1α mRNA was prevented by inhibition of NOS with N(G)-nitro-L-arginine methyl ester (L-NAME, 1 mM). Additionally, incubation of isolated mouse extensor digitorum longus (EDL) muscles with 2 mM AICAR for 20 min or electrical stimulation (10 Hz, 13 V) for 10 min induced phosphorylation of AMPKα (P < 0.05), which was completely prevented by pre-treatment with the NOS inhibitor, L-N(G)-monomethyl arginine (L-NMMA, 1 mM). These data identify the AMPKα1 isoform as the mediator of NO-induced effects in skeletal muscle cells. Further, this study supports a proposed model of synergistic interaction between AMPK and NOS that is critical for maintenance of metabolic function in skeletal muscle cells.
一氧化氮 (NO) 通过上调过氧化物酶体增殖物激活受体-γ 共激活因子 1α (PGC-1α) 诱导骨骼肌细胞中线粒体生物发生。此外,我们已经表明,一氧化氮与代谢传感器酶 AMPK 相互作用。因此,我们测试了这样一个假设,即一氧化氮和 AMPK 协同作用以上调 PGC-1α mRNA 表达并刺激培养中的线粒体生物发生。用一氧化氮供体 S-亚硝基-N-乙酰青霉胺 (SNAP,25 μM) 或二乙三胺五乙酸 NONO (DETA-NO,50 μM) 处理的 L6 肌管表现出升高的 AMPK 磷酸化、PGC-1α mRNA 和蛋白质以及基础和解偶联的线粒体呼吸 (P < 0.05)。用 AMPK 抑制剂 Compound C 预处理培养物可防止这些作用。用 siRNA 敲低 L6 肌管中的 AMPKα1 可降低 AMPKα 蛋白含量并阻止 DETA-NO 对 PGC-1α mRNA 的上调。同时,siRNA 敲低 AMPKα2 对总 AMPKα 蛋白含量或 PGC-1α mRNA 没有影响。这些结果表明,NO 对 PGC-1α 表达的影响是由 AMPKα1 介导的。矛盾的是,我们发现 AMPK 激活化合物 AICAR 从 L6 肌管中释放 NO,并且 NOS 抑制剂 N(G)-硝基-L-精氨酸甲酯 (L-NAME,1 mM) 可阻止 AICAR 诱导的 PGC-1α mRNA 上调。此外,用 2 mM AICAR 孵育分离的小鼠趾长伸肌 (EDL) 肌肉 20 分钟或电刺激 (10 Hz,13 V) 10 分钟诱导 AMPKα 的磷酸化 (P < 0.05),用 NOS 抑制剂 L-N(G)-单甲基精氨酸 (L-NMMA,1 mM) 预处理完全阻止了这种磷酸化。这些数据确定了 AMPKα1 同工型作为骨骼肌细胞中 NO 诱导作用的介质。此外,本研究支持 AMPK 和 NOS 之间协同相互作用的拟议模型,该模型对于维持骨骼肌细胞的代谢功能至关重要。