School of Materials, The University of Manchester, Manchester, UK M1 7HS.
Nanoscale. 2010 Jun;2(6):960-6. doi: 10.1039/b9nr00233b. Epub 2010 Apr 6.
We demonstrate that nanotubular networks formed by enzyme-triggered self-assembly of Fmoc-L3 (9-fluorenylmethoxycarbonyl-tri-leucine) show significant charge transport. FT-IR, fluorescence spectroscopy and wide angle X-ray scattering (WAXS) data confirm formation of beta-sheets that are locked together viapi-stacking interactions. Molecular dynamics simulations confirmed the pi-pi stacking distance between fluorenyl groups to be 3.6-3.8 A. Impedance spectroscopy demonstrated that the nanotubular xerogel networks possess minimum sheet resistances of 0.1 MOmega/sq in air and 500 MOmega/sq in vacuum (pressure: 1.03 mbar) at room temperature, with the conductivity scaling linearly with the mass of peptide in the network. These materials may provide a platform to interface biological components with electronics.
我们证明,由酶触发的 Fmoc-L3(9-芴甲氧羰基-三亮氨酸)自组装形成的管状网络表现出显著的电荷输运性能。傅里叶变换红外光谱、荧光光谱和广角 X 射线散射(WAXS)数据证实了β-折叠片的形成,这些折叠片通过π-堆积相互作用锁定在一起。分子动力学模拟证实了芴基之间的π-π堆积距离为 3.6-3.8Å。阻抗谱表明,管状气凝胶网络在室温下的空气和真空(压力:1.03 毫巴)中的最小片电阻分别为 0.1MOmega/sq 和 500MOmega/sq,其电导率与网络中肽的质量呈线性关系。这些材料可能为生物元件与电子元件的接口提供一个平台。