CSIRO Materials Science and Engineering, Ian Wark Laboratories, Bag 10, Clayton South, VIC 3169, Australia.
Biomaterials. 2011 Aug;32(22):5304-10. doi: 10.1016/j.biomaterials.2011.03.078. Epub 2011 Apr 30.
We demonstrate the distribution of the important extracellular matrix protein laminin in a novel biomaterial consisting of a hydrogel underpinned by nanofibrillar networks. These are formed by the immobilised enzyme mediated self-assembly of fmoc-L(3) (9-fluorenylmethoxycarbonyl-tri-leucine). The peptide assembly yields nanofibrils formed of β-sheets that are locked together via π-stacking interactions. This ordering allows the localisation of the peptide sidechains on the surface, creating a hydrophobic environment. This induces the formation of bundles of these nanofibrils producing a clear hydrogel. This mechanism enables the three dimensional distribution of laminin throughout the network via supramolecular interactions. These forces favour the formation and improve the order of the network itself, as observed by spectroscopic and mechanical testing. In order to test the stability and suitability of this class of material for in vivo applications, we utilise microinjection to deliver the biomaterial under fine spatial control into a dystrophic zebrafish model organism, which lacks laminin as a result of a genetic mutation. Using confocal and transmission electron microscopy, we confirm that the biomaterial remains stable structurally, and is confined spatially to the site of injection.
我们展示了一种新型生物材料中重要的细胞外基质蛋白层粘连蛋白的分布情况,该生物材料由水凝胶支撑的纳米纤维网络组成。这些网络是通过固定化酶介导的 fmoc-L(3)(9-芴甲氧羰基-三亮氨酸)自组装形成的。该肽组装产生由β-折叠组成的纳米纤维,通过π-堆积相互作用锁定在一起。这种有序性允许肽侧链在表面上定位,从而形成疏水环境。这诱导这些纳米纤维束的形成,产生清晰的水凝胶。这种机制通过超分子相互作用使层粘连蛋白在整个网络中三维分布。这些力有利于网络本身的形成和提高有序性,这可以通过光谱和力学测试观察到。为了测试这种材料用于体内应用的稳定性和适用性,我们利用微注射将生物材料在精细的空间控制下递送到缺乏层粘连蛋白的营养不良斑马鱼模型生物体内,这是由于基因突变导致的。通过共聚焦和透射电子显微镜,我们证实生物材料在结构上保持稳定,并被空间限制在注射部位。