Suppr超能文献

Ssecrett和NeuroTrace:用于大规模神经科学数据集的交互式可视化和分析工具。 (注:原文中“Ssecrett”可能有误,推测可能是“Secret”之类的词)

Ssecrett and NeuroTrace: interactive visualization and analysis tools for large-scale neuroscience data sets.

作者信息

Jeong Wan-Ki, Beyer Johanna, Hadwiger Markus, Blue Rusty, Law Charles, Vazquez-Reina Amelio, Reid R Clay, Lichtman Jeff, Pfister Hanspeter

机构信息

Harvard University, Cambridge, MA, USA.

出版信息

IEEE Comput Graph Appl. 2010 May-Jun;30(3):58-70. doi: 10.1109/MCG.2010.56.

Abstract

Data sets imaged with modern electron microscopes can range from tens of terabytes to about one petabyte. Two new tools, Ssecrett and NeuroTrace, support interactive exploration and analysis of large-scale optical-and electron-microscopy images to help scientists reconstruct complex neural circuits of the mammalian nervous system.

摘要

用现代电子显微镜成像的数据集大小范围可以从几十太字节到大约一 petabyte。两个新工具 Ssecrett 和 NeuroTrace,支持对大规模光学和电子显微镜图像进行交互式探索与分析,以帮助科学家重建哺乳动物神经系统的复杂神经回路。

相似文献

1
Ssecrett and NeuroTrace: interactive visualization and analysis tools for large-scale neuroscience data sets.
IEEE Comput Graph Appl. 2010 May-Jun;30(3):58-70. doi: 10.1109/MCG.2010.56.
2
Scalable and interactive segmentation and visualization of neural processes in EM datasets.
IEEE Trans Vis Comput Graph. 2009 Nov-Dec;15(6):1505-14. doi: 10.1109/TVCG.2009.178.
4
Automated image computing reshapes computational neuroscience.
BMC Bioinformatics. 2013 Oct 4;14:293. doi: 10.1186/1471-2105-14-293.
5
BrainView: a computer program for reconstruction and interactive visualization of 3D data sets.
J Neurosci Methods. 1998 Oct 1;84(1-2):143-54. doi: 10.1016/s0165-0270(98)00103-4.
6
NeuroBlocks--Visual Tracking of Segmentation and Proofreading for Large Connectomics Projects.
IEEE Trans Vis Comput Graph. 2016 Jan;22(1):738-46. doi: 10.1109/TVCG.2015.2467441.
8
The SONATA data format for efficient description of large-scale network models.
PLoS Comput Biol. 2020 Feb 24;16(2):e1007696. doi: 10.1371/journal.pcbi.1007696. eCollection 2020 Feb.
9
VAST (Volume Annotation and Segmentation Tool): Efficient Manual and Semi-Automatic Labeling of Large 3D Image Stacks.
Front Neural Circuits. 2018 Oct 16;12:88. doi: 10.3389/fncir.2018.00088. eCollection 2018.
10
The NeuroML ecosystem for standardized multi-scale modeling in neuroscience.
Elife. 2025 Jan 10;13:RP95135. doi: 10.7554/eLife.95135.

引用本文的文献

1
Vaa3D-x for cross-platform teravoxel-scale immersive exploration of multidimensional image data.
Bioinformatics. 2023 Jan 1;39(1). doi: 10.1093/bioinformatics/btac794.
2
Igneous: Distributed dense 3D segmentation meshing, neuron skeletonization, and hierarchical downsampling.
Front Neural Circuits. 2022 Nov 25;16:977700. doi: 10.3389/fncir.2022.977700. eCollection 2022.
3
Interactive Analysis for Large Volume Data from Fluorescence Microscopy at Cellular Precision.
Comput Graph. 2021 Aug;98:138-149. doi: 10.1016/j.cag.2021.05.006. Epub 2021 May 24.
4
webTDat: A Web-Based, Real-Time, 3D Visualization Framework for Mesoscopic Whole-Brain Images.
Front Neuroinform. 2021 Jan 13;14:542169. doi: 10.3389/fninf.2020.542169. eCollection 2020.
5
Flexible Learning-Free Segmentation and Reconstruction of Neural Volumes.
Sci Rep. 2018 Sep 24;8(1):14247. doi: 10.1038/s41598-018-32628-3.
6
Visualization of Neuronal Structures in Wide-Field Microscopy Brain Images.
IEEE Trans Vis Comput Graph. 2018 Aug 20. doi: 10.1109/TVCG.2018.2864852.
7
A Virtual Reality Visualization Tool for Neuron Tracing.
IEEE Trans Vis Comput Graph. 2018 Jan;24(1):994-1003. doi: 10.1109/TVCG.2017.2744079. Epub 2017 Aug 29.
8
TDat: An Efficient Platform for Processing Petabyte-Scale Whole-Brain Volumetric Images.
Front Neural Circuits. 2017 Jul 31;11:51. doi: 10.3389/fncir.2017.00051. eCollection 2017.
9
Is realistic neuronal modeling realistic?
J Neurophysiol. 2016 Nov 1;116(5):2180-2209. doi: 10.1152/jn.00360.2016. Epub 2016 Aug 17.
10
Input clustering and the microscale structure of local circuits.
Front Neural Circuits. 2014 Sep 12;8:112. doi: 10.3389/fncir.2014.00112. eCollection 2014.

本文引用的文献

1
Scalable and interactive segmentation and visualization of neural processes in EM datasets.
IEEE Trans Vis Comput Graph. 2009 Nov-Dec;15(6):1505-14. doi: 10.1109/TVCG.2009.178.
2
The human connectome: A structural description of the human brain.
PLoS Comput Biol. 2005 Sep;1(4):e42. doi: 10.1371/journal.pcbi.0010042.
3
Learning to detect natural image boundaries using local brightness, color, and texture cues.
IEEE Trans Pattern Anal Mach Intell. 2004 May;26(5):530-49. doi: 10.1109/TPAMI.2004.1273918.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验