Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, District of Columbia 20375, USA.
Nat Mater. 2010 Aug;9(8):676-84. doi: 10.1038/nmat2811.
The use of semiconductor quantum dots (QDs) for bioimaging and sensing has progressively matured over the past decade. QDs are highly sensitive to charge-transfer processes, which can alter their optical properties. Here, we demonstrate that QD-dopamine-peptide bioconjugates can function as charge-transfer coupled pH sensors. Dopamine is normally characterized by two intrinsic redox properties: a Nernstian dependence of formal potential on pH and oxidation of hydroquinone to quinone by O(2) at basic pH. We show that the latter quinone can function as an electron acceptor quenching QD photoluminescence in a manner that depends directly on pH. We characterize the pH-dependent QD quenching using both electrochemistry and spectroscopy. QD-dopamine conjugates were also used as pH sensors that measured changes in cytoplasmic pH as cells underwent drug-induced alkalosis. A detailed mechanism describing the QD quenching processes that is consistent with dopamine's inherent redox chemistry is presented.
在过去的十年中,半导体量子点(QD)在生物成像和传感方面的应用逐渐成熟。QD 对电荷转移过程非常敏感,这会改变它们的光学性质。在这里,我们证明 QD-多巴胺-肽生物缀合物可以作为电荷转移偶联 pH 传感器。多巴胺通常具有两个内在的氧化还原特性:标准电势对 pH 的 Nernst 依赖性和在碱性 pH 下,氢醌被 O(2)氧化为醌。我们表明,后者的醌可以作为电子受体,以直接依赖于 pH 的方式猝灭 QD 光致发光。我们使用电化学和光谱法来表征 pH 依赖性 QD 猝灭。QD-多巴胺缀合物也被用作 pH 传感器,用于测量细胞经历药物诱导的碱中毒时细胞质 pH 的变化。提出了一个详细的机制,描述了与多巴胺固有氧化还原化学一致的 QD 猝灭过程。