Suppr超能文献

环状排列为两种依赖钙离子的碳水化合物结合模块家族提供了进化联系。

Circular permutation provides an evolutionary link between two families of calcium-dependent carbohydrate binding modules.

机构信息

Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.

出版信息

J Biol Chem. 2010 Oct 8;285(41):31742-54. doi: 10.1074/jbc.M110.142133. Epub 2010 Jul 21.

Abstract

The microbial deconstruction of the plant cell wall is a critical biological process, which also provides important substrates for environmentally sustainable industries. Enzymes that hydrolyze the plant cell wall generally contain non-catalytic carbohydrate binding modules (CBMs) that contribute to plant cell wall degradation. Here we report the biochemical properties and crystal structure of a family of CBMs (CBM60) that are located in xylanases. Uniquely, the proteins display broad ligand specificity, targeting xylans, galactans, and cellulose. Some of the CBM60s display enhanced affinity for their ligands through avidity effects mediated by protein dimerization. The crystal structure of vCBM60, displays a β-sandwich with the ligand binding site comprising a broad cleft formed by the loops connecting the two β-sheets. Ligand recognition at site 1 is, exclusively, through hydrophobic interactions, whereas binding at site 2 is conferred by polar interactions between a protein-bound calcium and the O2 and O3 of the sugar. The observation, that ligand recognition at site 2 requires only a β-linked sugar that contains equatorial hydroxyls at C2 and C3, explains the broad ligand specificity displayed by vCBM60. The ligand-binding apparatus of vCBM60 displays remarkable structural conservation with a family 36 CBM (CBM36); however, the residues that contribute to carbohydrate recognition are derived from different regions of the two proteins. Three-dimensional structure-based sequence alignments reveal that CBM36 and CBM60 are related by circular permutation. The biological and evolutionary significance of the mechanism of ligand recognition displayed by family 60 CBMs is discussed.

摘要

植物细胞壁的微生物解构是一个关键的生物学过程,它也为环境可持续发展的工业提供了重要的底物。水解植物细胞壁的酶通常含有非催化性碳水化合物结合模块(CBMs),有助于植物细胞壁的降解。在这里,我们报告了位于木聚糖酶中的一类 CBM(CBM60)的生化特性和晶体结构。独特的是,这些蛋白质显示出广泛的配体特异性,靶向木聚糖、半乳糖和纤维素。一些 CBM60 通过蛋白质二聚化介导的亲合力效应显示出对其配体的增强亲和力。vCBM60 的晶体结构显示出一个β-三明治,配体结合位点由连接两个β-片的环形成的宽阔裂缝组成。位点 1 的配体识别完全通过疏水性相互作用,而位点 2 的结合则通过结合在蛋白质上的钙与糖的 O2 和 O3 之间的极性相互作用来赋予。观察到,位点 2 的配体识别仅需要含有 C2 和 C3 处的平伏羟基的β-连接糖,这解释了 vCBM60 显示出的广泛的配体特异性。vCBM60 的配体结合装置与家族 36 CBM(CBM36)具有显著的结构保守性;然而,有助于碳水化合物识别的残基来自于这两种蛋白质的不同区域。基于三维结构的序列比对表明,CBM36 和 CBM60 是通过圆形排列相关的。讨论了家族 60 CBMs 显示的配体识别机制的生物学和进化意义。

相似文献

1
Circular permutation provides an evolutionary link between two families of calcium-dependent carbohydrate binding modules.
J Biol Chem. 2010 Oct 8;285(41):31742-54. doi: 10.1074/jbc.M110.142133. Epub 2010 Jul 21.
3
The family 6 carbohydrate binding module CmCBM6-2 contains two ligand-binding sites with distinct specificities.
J Biol Chem. 2004 May 14;279(20):21552-9. doi: 10.1074/jbc.M401620200. Epub 2004 Mar 5.
10
Xyloglucan is recognized by carbohydrate-binding modules that interact with beta-glucan chains.
J Biol Chem. 2006 Mar 31;281(13):8815-28. doi: 10.1074/jbc.M510559200. Epub 2005 Nov 28.

引用本文的文献

2
Structural and biochemical insight into a modular β-1,4-galactan synthase in plants.
Nat Plants. 2023 Mar;9(3):486-500. doi: 10.1038/s41477-023-01358-4. Epub 2023 Feb 27.
3
Inhibitory effect of lignin on the hydrolysis of xylan by thermophilic and thermolabile GH11 xylanases.
Biotechnol Biofuels Bioprod. 2022 May 14;15(1):49. doi: 10.1186/s13068-022-02148-4.
7
Carbohydrate Binding Modules: Diversity of Domain Architecture in Amylases and Cellulases From Filamentous Microorganisms.
Front Bioeng Biotechnol. 2020 Jul 31;8:871. doi: 10.3389/fbioe.2020.00871. eCollection 2020.
10
Origin, evolution, and divergence of plant class C GH9 endoglucanases.
BMC Evol Biol. 2018 May 30;18(1):79. doi: 10.1186/s12862-018-1185-2.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Circular permutation of Bacillus circulans xylanase: a kinetic and structural study.
Biochemistry. 2010 Mar 23;49(11):2464-74. doi: 10.1021/bi100036f.
3
Mechanistic insights into a Ca2+-dependent family of alpha-mannosidases in a human gut symbiont.
Nat Chem Biol. 2010 Feb;6(2):125-32. doi: 10.1038/nchembio.278. Epub 2009 Dec 27.
5
Lignocellulose conversion to biofuels: current challenges, global perspectives.
Curr Opin Biotechnol. 2009 Jun;20(3):316-7. doi: 10.1016/j.copbio.2009.05.005. Epub 2009 Jun 10.
7
CPDB: a database of circular permutation in proteins.
Nucleic Acids Res. 2009 Jan;37(Database issue):D328-32. doi: 10.1093/nar/gkn679. Epub 2008 Oct 8.
8
The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics.
Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8. doi: 10.1093/nar/gkn663. Epub 2008 Oct 5.
9
Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus.
J Bacteriol. 2008 Aug;190(15):5455-63. doi: 10.1128/JB.01701-07. Epub 2008 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验