Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
J Biol Chem. 2010 Oct 8;285(41):31742-54. doi: 10.1074/jbc.M110.142133. Epub 2010 Jul 21.
The microbial deconstruction of the plant cell wall is a critical biological process, which also provides important substrates for environmentally sustainable industries. Enzymes that hydrolyze the plant cell wall generally contain non-catalytic carbohydrate binding modules (CBMs) that contribute to plant cell wall degradation. Here we report the biochemical properties and crystal structure of a family of CBMs (CBM60) that are located in xylanases. Uniquely, the proteins display broad ligand specificity, targeting xylans, galactans, and cellulose. Some of the CBM60s display enhanced affinity for their ligands through avidity effects mediated by protein dimerization. The crystal structure of vCBM60, displays a β-sandwich with the ligand binding site comprising a broad cleft formed by the loops connecting the two β-sheets. Ligand recognition at site 1 is, exclusively, through hydrophobic interactions, whereas binding at site 2 is conferred by polar interactions between a protein-bound calcium and the O2 and O3 of the sugar. The observation, that ligand recognition at site 2 requires only a β-linked sugar that contains equatorial hydroxyls at C2 and C3, explains the broad ligand specificity displayed by vCBM60. The ligand-binding apparatus of vCBM60 displays remarkable structural conservation with a family 36 CBM (CBM36); however, the residues that contribute to carbohydrate recognition are derived from different regions of the two proteins. Three-dimensional structure-based sequence alignments reveal that CBM36 and CBM60 are related by circular permutation. The biological and evolutionary significance of the mechanism of ligand recognition displayed by family 60 CBMs is discussed.
植物细胞壁的微生物解构是一个关键的生物学过程,它也为环境可持续发展的工业提供了重要的底物。水解植物细胞壁的酶通常含有非催化性碳水化合物结合模块(CBMs),有助于植物细胞壁的降解。在这里,我们报告了位于木聚糖酶中的一类 CBM(CBM60)的生化特性和晶体结构。独特的是,这些蛋白质显示出广泛的配体特异性,靶向木聚糖、半乳糖和纤维素。一些 CBM60 通过蛋白质二聚化介导的亲合力效应显示出对其配体的增强亲和力。vCBM60 的晶体结构显示出一个β-三明治,配体结合位点由连接两个β-片的环形成的宽阔裂缝组成。位点 1 的配体识别完全通过疏水性相互作用,而位点 2 的结合则通过结合在蛋白质上的钙与糖的 O2 和 O3 之间的极性相互作用来赋予。观察到,位点 2 的配体识别仅需要含有 C2 和 C3 处的平伏羟基的β-连接糖,这解释了 vCBM60 显示出的广泛的配体特异性。vCBM60 的配体结合装置与家族 36 CBM(CBM36)具有显著的结构保守性;然而,有助于碳水化合物识别的残基来自于这两种蛋白质的不同区域。基于三维结构的序列比对表明,CBM36 和 CBM60 是通过圆形排列相关的。讨论了家族 60 CBMs 显示的配体识别机制的生物学和进化意义。