Suppr超能文献

独特的 Fn3 样生物传感器在 σ/anti-σ 因子中,用于调节 Pseudobacteroides cellulosolvens 中主要纤维素酶支架蛋白的表达。

Unique Fn3-like biosensor in σ/anti-σ factors for regulatory expression of major cellulosomal scaffoldins in Pseudobacteroides cellulosolvens.

机构信息

CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.

Qingdao Engineering Laboratory of Single Cell Oil, Shandong Engineering Laboratory of Single Cell Oil, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.

出版信息

Protein Sci. 2024 Nov;33(11):e5193. doi: 10.1002/pro.5193.

Abstract

Lignocellulolytic clostridia employ multiple pairs of alternative σ/anti-σ (SigI/RsgI) factors to regulate cellulosomal components for substrate-specific degradation of cellulosic biomass. The current model has proposed that RsgIs use a sensor domain to bind specific extracellular lignocellulosic components and activate cognate SigIs to initiate expression of corresponding cellulosomal enzyme genes, while expression of scaffoldins can be initiated by several different SigIs. Pseudobacteroides cellulosolvens contains the most complex known cellulosome system and the highest number of SigI-RsgI regulons yet discovered. However, the function of many RsgI sensor domains and their relationship with the various enzyme types are not fully understood. Here, we report that RsgI4 from P. cellulosolvens employs a C-terminal module that bears distant similarity to the fibronectin type III (Fn3) domain and serves as the sensor domain. Substrate-binding analysis revealed that the Fn3-like domain of RsgI4 represents a novel carbohydrate-binding module (CBM) that binds to a wide range of polysaccharide types. Structure determination further revealed that the Fn3-like domain belongs to the type B group of CBMs with a predicted concave face for substrate binding. Promoter sequence analysis of cellulosomal genes revealed that SigI4 is responsible for cellulosomal regulation of major scaffoldins rather than enzymes, consistent with the broad substrate specificity of the RsgI4 sensor domain. Notably, scaffoldins are invariably required as cellulosome components regardless of the substrate type. These findings suggest that the intricate cellulosome system of P. cellulosolvens comprises a more elaborate regulation mechanism than other bacteria and thus expands the paradigm of cellulosome regulation.

摘要

木质纤维素分解梭菌使用多对替代的 σ/抗-σ(SigI/RsgI)因子来调节细胞体成分,以实现对纤维素生物质的底物特异性降解。目前的模型提出,RsgIs 使用传感器结构域结合特定的细胞外木质纤维素成分,并激活同源 SigI 来启动相应的细胞体酶基因的表达,而支架蛋白的表达可以由几个不同的 SigI 启动。拟杆菌属纤维素分解菌含有最复杂的已知细胞体系统和迄今为止发现的最多数量的 SigI-RsgI 调控子。然而,许多 RsgI 传感器结构域的功能及其与各种酶类型的关系尚未完全了解。在这里,我们报告说,来自 P. cellulosolvens 的 RsgI4 使用一个 C 端模块,该模块与纤维连接蛋白 III(Fn3)结构域具有遥远的相似性,并作为传感器结构域。底物结合分析表明,RsgI4 的 Fn3 样结构域代表了一种新型的碳水化合物结合模块(CBM),可结合广泛的多糖类型。结构测定进一步表明,Fn3 样结构域属于 CBM 的 B 组,具有用于底物结合的预测凹面。细胞体基因的启动子序列分析表明,SigI4 负责主要支架蛋白的细胞体调节,而不是酶,这与 RsgI4 传感器结构域的广泛底物特异性一致。值得注意的是,无论底物类型如何,支架蛋白始终作为细胞体成分是必需的。这些发现表明,拟杆菌属纤维素分解菌的复杂细胞体系统比其他细菌具有更精细的调节机制,从而扩展了细胞体调节的范例。

相似文献

5
Measures implemented in the school setting to contain the COVID-19 pandemic.学校为控制 COVID-19 疫情而采取的措施。
Cochrane Database Syst Rev. 2022 Jan 17;1(1):CD015029. doi: 10.1002/14651858.CD015029.

本文引用的文献

10
The Pfam protein families database in 2019.2019 年 Pfam 蛋白质家族数据库。
Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432. doi: 10.1093/nar/gky995.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验