5000 名独立划桨者如何协调他们的划桨动作,以便进入阳光中:多细胞绿藻团藻的趋光性。

How 5000 independent rowers coordinate their strokes in order to row into the sunlight: phototaxis in the multicellular green alga Volvox.

机构信息

Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr 25, 33615 Bielefeld, Germany.

出版信息

BMC Biol. 2010 Jul 27;8:103. doi: 10.1186/1741-7007-8-103.

Abstract

BACKGROUND

The evolution of multicellular motile organisms from unicellular ancestors required the utilization of previously evolved tactic behavior in a multicellular context. Volvocine green algae are uniquely suited for studying tactic responses during the transition to multicellularity because they range in complexity from unicellular to multicellular genera. Phototactic responses are essential for these flagellates because they need to orientate themselves to receive sufficient light for photosynthesis, but how does a multicellular organism accomplish phototaxis without any known direct communication among cells? Several aspects of the photoresponse have previously been analyzed in volvocine algae, particularly in the unicellular alga Chlamydomonas.

RESULTS

In this study, the phototactic behavior in the spheroidal, multicellular volvocine green alga Volvox rousseletii (Volvocales, Chlorophyta) was analyzed. In response to light stimuli, not only did the flagella waveform and beat frequency change, but the effective stroke was reversed. Moreover, there was a photoresponse gradient from the anterior to the posterior pole of the spheroid, and only cells of the anterior hemisphere showed an effective response. The latter caused a reverse of the fluid flow that was confined to the anterior hemisphere. The responsiveness to light is consistent with an anterior-to-posterior size gradient of eyespots. At the posterior pole, the eyespots are tiny or absent, making the corresponding cells appear to be blind. Pulsed light stimulation of an immobilized spheroid was used to simulate the light fluctuation experienced by a rotating spheroid during phototaxis. The results demonstrated that in free-swimming spheroids, only those cells of the anterior hemisphere that face toward the light source reverse the beating direction in the presence of illumination; this behavior results in phototactic turning. Moreover, positive phototaxis is facilitated by gravitational forces. Under our conditions, V. rousseletii spheroids showed no negative phototaxis.

CONCLUSIONS

On the basis of our results, we developed a mechanistic model that predicts the phototactic behavior in V. rousseletii. The model involves photoresponses, periodically changing light conditions, morphological polarity, rotation of the spheroid, two modes of flagellar beating, and the impact of gravity. Our results also indicate how recently evolved multicellular organisms adapted the phototactic capabilities of their unicellular ancestors to multicellular life.

摘要

背景

从单细胞祖先进化而来的多细胞运动生物需要在多细胞环境中利用先前进化而来的策略行为。绿藻团藻属特别适合研究向多细胞过渡过程中的策略反应,因为它们的复杂性从单细胞到多细胞属不等。趋光反应对这些鞭毛藻类至关重要,因为它们需要定位自己以获得足够的光合作用光,但多细胞生物如何在没有任何已知细胞间直接通信的情况下完成趋光性?以前已经在绿藻团藻属中分析了光反应的几个方面,特别是在单细胞藻类衣藻中。

结果

在这项研究中,分析了多细胞绿藻团藻属(团藻目,绿藻门)的趋光行为。对光刺激的响应不仅引起鞭毛的波形和拍打频率发生变化,而且有效行程也发生反转。此外,在球体的前极到后极之间存在光响应梯度,只有前半球体的细胞显示出有效的响应。后者导致仅局限于前半球体的流体流的反转。对光的响应与眼点的前极到后极大小梯度一致。在后极,眼点很小或不存在,使得相应的细胞看起来是盲的。用固定球体的脉冲光刺激来模拟趋光性过程中旋转球体所经历的光波动。结果表明,在自由游动的球体中,只有面向光源的前半球体的那些细胞在光照下会反转拍打方向;这种行为导致趋光性转弯。此外,重力有助于正趋光性。在我们的条件下,V. rousseletii 球体没有表现出负趋光性。

结论

基于我们的结果,我们提出了一个机械模型来预测 V. rousseletii 的趋光行为。该模型涉及光反应、周期性变化的光照条件、形态极性、球体旋转、两种鞭毛拍打模式以及重力的影响。我们的结果还表明,最近进化的多细胞生物如何适应其单细胞祖先的趋光能力以适应多细胞生活。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d0/2920248/7e09386c3b46/1741-7007-8-103-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索