Suppr超能文献

膨果藻,最简单的分化群体藻类的运动性和趋光性。

Motility and phototaxis of Gonium, the simplest differentiated colonial alga.

机构信息

Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom.

Université Paris-Saclay, CNRS, FAST, 91405, Orsay, France.

出版信息

Phys Rev E. 2020 Feb;101(2-1):022416. doi: 10.1103/PhysRevE.101.022416.

Abstract

Green algae of the Volvocine lineage, spanning from unicellular Chlamydomonas to vastly larger Volvox, are models for the study of the evolution of multicellularity, flagellar dynamics, and developmental processes. Phototactic steering in these organisms occurs without a central nervous system, driven solely by the response of individual cells. All such algae spin about a body-fixed axis as they swim; directional photosensors on each cell thus receive periodic signals when that axis is not aligned with the light. The flagella of Chlamydomonas and Volvox both exhibit an adaptive response to such signals in a manner that allows for accurate phototaxis, but in the former the two flagella have distinct responses, while the thousands of flagella on the surface of spherical Volvox colonies have essentially identical behavior. The planar 16-cell species Gonium pectorale thus presents a conundrum, for its central 4 cells have a Chlamydomonas-like beat that provide propulsion normal to the plane, while its 12 peripheral cells generate rotation around the normal through a Volvox-like beat. Here we combine experiment, theory, and computations to reveal how Gonium, perhaps the simplest differentiated colonial organism, achieves phototaxis. High-resolution cell tracking, particle image velocimetry of flagellar driven flows, and high-speed imaging of flagella on micropipette-held colonies show how, in the context of a recently introduced model for Chlamydomonas phototaxis, an adaptive response of the peripheral cells alone leads to photoreorientation of the entire colony. The analysis also highlights the importance of local variations in flagellar beat dynamics within a given colony, which can lead to enhanced reorientation dynamics.

摘要

绿藻的盘藻目谱系,从单细胞的衣藻到更大的团藻,都是研究多细胞进化、鞭毛动力学和发育过程的模式生物。这些生物的趋光性转向不需要中枢神经系统,而是完全由单个细胞的反应驱动。所有这些藻类在游泳时都绕着身体固定的轴旋转;因此,当该轴与光不平行时,每个细胞上的定向光感受器会周期性地接收到信号。衣藻和团藻的鞭毛都对这种信号表现出适应性反应,从而能够实现准确的趋光性,但在前者中,两个鞭毛的反应不同,而在球形团藻菌落表面的数千个鞭毛则具有基本相同的行为。因此,平面的 16 细胞物种盘藻呈现出一个难题,因为其中心的 4 个细胞具有类似于衣藻的拍打模式,提供了正常平面的推进力,而其 12 个外围细胞则通过类似于团藻的拍打模式产生围绕正常的旋转。在这里,我们结合实验、理论和计算来揭示盘藻——也许是最简单的分化群体生物——如何实现趋光性。高分辨率细胞跟踪、鞭毛驱动流的粒子图像测速以及微吸管固定菌落上的鞭毛高速成像表明,在最近引入的衣藻趋光性模型的背景下,仅外围细胞的适应性反应就会导致整个菌落的光转向。该分析还强调了给定菌落中鞭毛拍打动力学的局部变化的重要性,这可以导致增强的重新定向动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/650c/7616084/87abee58b57a/EMS196593-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验