Ménézo Yves, Dale Brian, Cohen Marc
UNILABS, Laboratoire d'Eylau, Paris, France.
Zygote. 2010 Nov;18(4):357-65. doi: 10.1017/S0967199410000286. Epub 2010 Jul 21.
The genome of all cells is protected at all times by mechanisms collectively known as DNA repair activity (DRA). Such activity is particularly important at the beginning of human life, i.e. at fertilization, immediately after and at the very onset of embryonic development. DRA in early development is, by definition, of maternal origin: the transcripts stored during maturation, need to control the integrity of chromatin, at least until the maternal/zygotic transition at the 4- to 8-cell stage in the human embryo. Tolerance towards DNA damage must be low during this critical stage of development. The majority of DNA damage is due to either apoptosis or reactive oxygen species (ROS). Apoptosis, abortive or not, is a common feature in human sperm, especially in oligoasthenospermic patients and FAS ligand has been reported on the surface of human spermatozoa. The susceptibility of human sperm to DNA damage is well documented, particularly the negative effect of ROS (Kodama et al., 1997; Lopes et al., 1998a, b) and DNA modifying agents (Zenzes et al., 1999; Badouard et al., 2007). DNA damage in sperm is one of the major causes of male infertility and is of much concern in relation to the paternal transmission of mutations and cancer (Zenzes, 2000; Aitken et al., 2003; Fernández-Gonzalez, 2008). It is now clear that DNA damaged spermatozoa are able to reach the fertilization site in vivo (Zenzes et al., 1999), fertilize oocytes and generate early embryos both in vivo and in vitro. The effect of ROS on human oocytes is not as easy to study or quantify. It is a common consensus that the maternal genome is relatively well protected while in the maturing follicle; however damage may occur during the long quiescent period before meiotic re-activation (Zenzes et al., 1998). In fact, during the final stages of follicular growth, the oocyte may be susceptible to damage by ROS. With regards to the embryo there is active protection against ROS in the surrounding environment i.e. in follicular and tubal fluid (El Mouatassim et al., 2000; Guerin et al., 2001). DNA repair activity in the zygote is mandatory in order to avoid mutation in the germ line (Derijck et al., 2008). In this review we focus on the expression of mRNAs that regulate DNA repair capacity in the human oocyte and the mechanisms that protect the embryo against de novo damage.
所有细胞的基因组始终受到统称为DNA修复活性(DRA)的机制的保护。这种活性在人类生命开始时,即在受精时、紧接受精后以及胚胎发育刚开始时,尤为重要。早期发育中的DRA,根据定义,源自母体:成熟过程中储存的转录本需要控制染色质的完整性,至少直到人类胚胎4至8细胞阶段的母源/合子转变。在这个关键的发育阶段,对DNA损伤的耐受性必须很低。大多数DNA损伤是由细胞凋亡或活性氧(ROS)引起的。细胞凋亡,无论是否流产,都是人类精子中的常见特征,尤其是在少弱精子症患者中,并且已经报道人类精子表面存在FAS配体。人类精子对DNA损伤的易感性已有充分记录,尤其是ROS(Kodama等人,1997年;Lopes等人,1998a、b)和DNA修饰剂(Zenzes等人,1999年;Badouard等人,2007年)的负面影响。精子中的DNA损伤是男性不育的主要原因之一,并且与突变和癌症的父系遗传密切相关(Zenzes,2000年;Aitken等人,2003年;Fernández-Gonzalez,2008年)。现在很清楚,DNA受损的精子能够在体内到达受精部位(Zenzes等人,1999年),使卵母细胞受精并在体内和体外产生早期胚胎。ROS对人类卵母细胞的影响不容易研究或量化。人们普遍认为,在成熟卵泡中,母源基因组受到相对良好的保护;然而,在减数分裂重新激活前的长时间静止期可能会发生损伤(Zenzes等人,1998年)。事实上,在卵泡生长的最后阶段,卵母细胞可能易受ROS的损伤。关于胚胎,其周围环境,即卵泡液和输卵管液中存在针对ROS的积极保护机制(El Mouatassim等人,2000年;Guerin等人,2001年)。合子中的DNA修复活性对于避免生殖系突变是必不可少的(Derijck等人,2008年)。在这篇综述中,我们重点关注调节人类卵母细胞DNA修复能力的mRNA的表达以及保护胚胎免受新生损伤的机制。