Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
Physiol Rev. 2010 Jul;90(3):1103-63. doi: 10.1152/physrev.00038.2009.
Green fluorescent protein (GFP) from the jellyfish Aequorea victoria and its homologs from diverse marine animals are widely used as universal genetically encoded fluorescent labels. Many laboratories have focused their efforts on identification and development of fluorescent proteins with novel characteristics and enhanced properties, resulting in a powerful toolkit for visualization of structural organization and dynamic processes in living cells and organisms. The diversity of currently available fluorescent proteins covers nearly the entire visible spectrum, providing numerous alternative possibilities for multicolor labeling and studies of protein interactions. Photoactivatable fluorescent proteins enable tracking of photolabeled molecules and cells in space and time and can also be used for super-resolution imaging. Genetically encoded sensors make it possible to monitor the activity of enzymes and the concentrations of various analytes. Fast-maturing fluorescent proteins, cell clocks, and timers further expand the options for real time studies in living tissues. Here we focus on the structure, evolution, and function of GFP-like proteins and their numerous applications for in vivo imaging, with particular attention to recent techniques.
绿色荧光蛋白(GFP)来自水母维多利亚多管发光水母及其来自多种海洋动物的同源物,被广泛用作通用的遗传编码荧光标记物。许多实验室都致力于鉴定和开发具有新颖特性和增强特性的荧光蛋白,从而为可视化活细胞和生物体的结构组织和动态过程提供了强大的工具包。目前可用的荧光蛋白的多样性几乎涵盖了整个可见光谱,为多色标记和蛋白质相互作用研究提供了众多替代可能性。光活化荧光蛋白能够在空间和时间上追踪光标记的分子和细胞,也可用于超分辨率成像。遗传编码传感器可用于监测酶的活性和各种分析物的浓度。快速成熟的荧光蛋白、细胞时钟和定时器进一步扩展了在活组织中实时研究的选择。在这里,我们重点介绍 GFP 样蛋白的结构、进化和功能及其在体内成像中的众多应用,特别关注最近的技术。