Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America.
PLoS Pathog. 2010 Jul 15;6(7):e1000999. doi: 10.1371/journal.ppat.1000999.
The cap structure of eukaryotic messenger RNAs is initially elaborated through three enzymatic reactions: hydrolysis of the 5'-triphosphate, transfer of guanosine through a 5'-5' triphosphate linkage and N7-methylation of the guanine cap. Three distinctive enzymes catalyze each reaction in various microbial eukaryotes, whereas the first two enzymes are fused into a single polypeptide in metazoans and plants. In addition to the guanosine cap, adjacent nucleotides are 2'-O-ribose methylated in metazoa and plants, but not in yeast. Analyses of various cap structures have suggested a linear phylogenetic trend of complexity. These findings have led to a model in which plants and metazoa evolved a two-component capping apparatus and modification of adjacent nucleotides while many microbial eukaryotes maintained the three-component system and did not develop modification of adjacent nucleotides. Here, we have characterized a bifunctional capping enzyme in the divergent microbial eukaryote Trichomonas vaginalis using biochemical and phylogenetic analyses. This unicellular parasite was found to harbor a metazoan/plant-like capping apparatus that is represented by a two-domain polypeptide containing a C-terminus guanylyltransferase and a cysteinyl phosphatase triphosphatase, distinct from its counterpart in other microbial eukaryotes. In addition, T. vaginalis mRNAs contain a cap 1 structure represented by m(7)GpppAmpUp or m(7)GpppCmpUp; a feature typical of metazoan and plant mRNAs but absent in yeast mRNAs. Phylogenetic and biochemical analyses of the origin of the T. vaginalis capping enzyme suggests a complex evolutionary model where differential gene loss and/or acquisition occurred in the development of the RNA capping apparatus and cap modified nucleotides during eukaryote diversification.
真核生物信使 RNA 的帽结构最初通过三个酶反应来修饰:5'-三磷酸的水解、通过 5'-5'三磷酸键转移鸟苷以及鸟嘌呤帽的 N7-甲基化。在各种微生物真核生物中,三种独特的酶催化每个反应,而前两种酶在后生动物和植物中融合成单个多肽。除了鸟苷帽外,相邻核苷酸在后生动物和植物中被 2'-O-核糖甲基化,但在酵母中则没有。对各种帽结构的分析表明了一种复杂的线性系统发育趋势。这些发现导致了一个模型,即植物和后生动物进化出了一种由两个组件组成的加帽装置和修饰相邻核苷酸的能力,而许多微生物真核生物则保留了三组件系统,并且没有发展出修饰相邻核苷酸的能力。在这里,我们使用生化和系统发育分析,对分化的微生物真核生物阴道毛滴虫中的双功能加帽酶进行了特征描述。这种单细胞寄生虫含有类似于后生动物/植物的加帽装置,由一个包含 C 端鸟苷转移酶和半胱氨酸磷酸三磷酸酶的双结构域多肽组成,与其他微生物真核生物的对应物不同。此外,T. vaginalis 的 mRNAs 含有帽 1 结构,由 m(7)GpppAmpUp 或 m(7)GpppCmpUp 表示;这是后生动物和植物 mRNAs 的典型特征,但在酵母 mRNAs 中不存在。阴道毛滴虫加帽酶的起源的系统发育和生化分析表明,在真核生物多样化过程中,RNA 加帽装置和帽修饰核苷酸的发展发生了复杂的进化模型,其中包括基因的差异丢失和/或获得。