Suppr超能文献

线性和非线性稳定微流控梯度中的细菌趋化性。

Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients.

机构信息

Ralph M Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

出版信息

Nano Lett. 2010 Sep 8;10(9):3379-85. doi: 10.1021/nl101204e.

Abstract

Diffusion-based microfluidic devices can generate steady, arbitrarily shaped chemical gradients without requiring fluid flow and are ideal for studying chemotaxis of free-swimming cells such as bacteria. However, if microfluidic gradient generators are to be used to systematically study bacterial chemotaxis, it is critical to evaluate their performance with actual quantitative chemotaxis tests. We characterize and compare three diffusion-based gradient generators by confocal microscopy and numerical simulations, select an optimal design and apply it to chemotaxis experiments with Escherichia coli in both linear and nonlinear gradients. Comparison of the observed cell distribution along the gradients with predictions from an established mathematical model shows very good agreement, providing the first quantification of chemotaxis of free-swimming cells in steady nonlinear microfluidic gradients and opening the door to bacterial chemotaxis studies in gradients of arbitrary shape.

摘要

基于扩散的微流控设备可以在不需要流体流动的情况下产生稳定的、任意形状的化学梯度,非常适合研究自由游动细胞(如细菌)的趋化性。然而,如果要使用微流控梯度发生器来系统地研究细菌趋化性,就必须用实际的定量趋化性测试来评估它们的性能。我们通过共聚焦显微镜和数值模拟对三种基于扩散的梯度发生器进行了表征和比较,选择了最佳设计,并将其应用于线性和非线性梯度中大肠杆菌的趋化性实验。将观察到的细胞沿着梯度的分布与从建立的数学模型得到的预测进行比较,结果显示非常好的一致性,这首次对稳定非线性微流控梯度中自由游动细胞的趋化性进行了量化,并为在任意形状的梯度中进行细菌趋化性研究打开了大门。

相似文献

1
Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients.
Nano Lett. 2010 Sep 8;10(9):3379-85. doi: 10.1021/nl101204e.
2
Microfluidics for bacterial chemotaxis.
Integr Biol (Camb). 2010 Nov;2(11-12):604-29. doi: 10.1039/c0ib00049c. Epub 2010 Oct 21.
3
Multiplexed microfluidic screening of bacterial chemotaxis.
Elife. 2023 Jul 24;12:e85348. doi: 10.7554/eLife.85348.
4
Development of a Flow-free Gradient Generator Using a Self-Adhesive Thiol-acrylate Microfluidic Resin/Hydrogel (TAMR/H) Hybrid System.
ACS Appl Mater Interfaces. 2021 Jun 16;13(23):26735-26747. doi: 10.1021/acsami.1c04771. Epub 2021 Jun 3.
6
Bacterial chemotaxis transverse to axial flow in a microfluidic channel.
Biotechnol Bioeng. 2008 Jul 1;100(4):653-63. doi: 10.1002/bit.21814.
8
9
Investigation of bacterial chemotaxis in flow-based microfluidic devices.
Nat Protoc. 2010 May;5(5):864-72. doi: 10.1038/nprot.2010.18. Epub 2010 Apr 15.
10
Coarse graining Escherichia coli chemotaxis: from multi-flagella propulsion to logarithmic sensing.
Adv Exp Med Biol. 2012;736:381-96. doi: 10.1007/978-1-4419-7210-1_22.

引用本文的文献

2
Optimal Cell Length for Exploration and Exploitation in Chemotactic Planktonic Bacteria.
Environ Microbiol. 2024 Dec;26(12):e70021. doi: 10.1111/1462-2920.70021.
3
Dynamic cluster field modeling of collective chemotaxis.
Sci Rep. 2024 Oct 24;14(1):25162. doi: 10.1038/s41598-024-75653-1.
4
Microfluidic approaches in microbial ecology.
Lab Chip. 2024 Feb 27;24(5):1394-1418. doi: 10.1039/d3lc00784g.
5
Microfluidic nanodevices for drug sensing and screening applications.
Biosens Bioelectron. 2023 Jan 1;219:114783. doi: 10.1016/j.bios.2022.114783. Epub 2022 Oct 5.
7
Bacterial chemotaxis to saccharides is governed by a trade-off between sensing and uptake.
Biophys J. 2022 Jun 7;121(11):2046-2059. doi: 10.1016/j.bpj.2022.05.003. Epub 2022 May 6.
8
Multiple functions of flagellar motility and chemotaxis in bacterial physiology.
FEMS Microbiol Rev. 2021 Nov 23;45(6). doi: 10.1093/femsre/fuab038.
9
Development of a Flow-free Gradient Generator Using a Self-Adhesive Thiol-acrylate Microfluidic Resin/Hydrogel (TAMR/H) Hybrid System.
ACS Appl Mater Interfaces. 2021 Jun 16;13(23):26735-26747. doi: 10.1021/acsami.1c04771. Epub 2021 Jun 3.
10
Flow-assembled chitosan membranes in microfluidics: recent advances and applications.
J Mater Chem B. 2021 Apr 21;9(15):3258-3283. doi: 10.1039/d1tb00045d. Epub 2021 Mar 16.

本文引用的文献

1
Responses of Escherichia coli bacteria to two opposing chemoattractant gradients depend on the chemoreceptor ratio.
J Bacteriol. 2010 Apr;192(7):1796-800. doi: 10.1128/JB.01507-09. Epub 2010 Jan 29.
2
The microfluidic palette: a diffusive gradient generator with spatio-temporal control.
Lab Chip. 2009 Sep 21;9(18):2707-14. doi: 10.1039/b902113b. Epub 2009 Jun 22.
3
Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients.
Appl Environ Microbiol. 2009 Jul;75(13):4557-64. doi: 10.1128/AEM.02952-08. Epub 2009 May 1.
4
An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies.
Biomed Microdevices. 2009 Aug;11(4):827-35. doi: 10.1007/s10544-009-9299-3.
5
Logarithmic sensing in Escherichia coli bacterial chemotaxis.
Biophys J. 2009 Mar 18;96(6):2439-48. doi: 10.1016/j.bpj.2008.10.027.
6
Run and tumble chemotaxis in a shear flow: the effect of temporal comparisons, persistence, rotational diffusion, and cell shape.
Bull Math Biol. 2009 Jul;71(5):1089-116. doi: 10.1007/s11538-009-9395-9. Epub 2009 Feb 7.
8
A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment.
Lab Chip. 2008 Sep;8(9):1507-15. doi: 10.1039/b803533d. Epub 2008 Jul 16.
9
Generating steep, shear-free gradients of small molecules for cell culture.
Biomed Microdevices. 2009 Feb;11(1):65-73. doi: 10.1007/s10544-008-9210-7.
10
Experimental verification of the behavioral foundation of bacterial transport parameters using microfluidics.
Biophys J. 2008 Nov 1;95(9):4481-93. doi: 10.1529/biophysj.108.134510. Epub 2008 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验