Ralph M Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
Nano Lett. 2010 Sep 8;10(9):3379-85. doi: 10.1021/nl101204e.
Diffusion-based microfluidic devices can generate steady, arbitrarily shaped chemical gradients without requiring fluid flow and are ideal for studying chemotaxis of free-swimming cells such as bacteria. However, if microfluidic gradient generators are to be used to systematically study bacterial chemotaxis, it is critical to evaluate their performance with actual quantitative chemotaxis tests. We characterize and compare three diffusion-based gradient generators by confocal microscopy and numerical simulations, select an optimal design and apply it to chemotaxis experiments with Escherichia coli in both linear and nonlinear gradients. Comparison of the observed cell distribution along the gradients with predictions from an established mathematical model shows very good agreement, providing the first quantification of chemotaxis of free-swimming cells in steady nonlinear microfluidic gradients and opening the door to bacterial chemotaxis studies in gradients of arbitrary shape.
基于扩散的微流控设备可以在不需要流体流动的情况下产生稳定的、任意形状的化学梯度,非常适合研究自由游动细胞(如细菌)的趋化性。然而,如果要使用微流控梯度发生器来系统地研究细菌趋化性,就必须用实际的定量趋化性测试来评估它们的性能。我们通过共聚焦显微镜和数值模拟对三种基于扩散的梯度发生器进行了表征和比较,选择了最佳设计,并将其应用于线性和非线性梯度中大肠杆菌的趋化性实验。将观察到的细胞沿着梯度的分布与从建立的数学模型得到的预测进行比较,结果显示非常好的一致性,这首次对稳定非线性微流控梯度中自由游动细胞的趋化性进行了量化,并为在任意形状的梯度中进行细菌趋化性研究打开了大门。