Argonne National Laboratory, Center for Nanoscale Materials, Argonne, IL 60439, USA.
Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14530-4. doi: 10.1073/pnas.1007524107. Epub 2010 Jul 29.
The size-dependence of surface plasmon resonances (SPRs) is poorly understood in the small particle limit due to complex physical/chemical effects and uncertainties in experimental samples. In this article, we report an approach for synthesizing an ideal class of colloidal Ag nanoparticles with highly uniform morphologies and narrow size distributions. Optical measurements and theoretical analyses for particle diameters in the d approximately 2-20 nm range are presented. The SPR absorption band exhibits an exceptional behavior: As size decreases from d approximately 20 nm it blue-shifts but then turns over near d approximately 12 nm and strongly red-shifts. A multilayer Mie theory model agrees well with the observations, indicating that lowered electron conductivity in the outermost atomic layer, due to chemical interactions, is the cause of the red-shift. We corroborate this picture by experimentally demonstrating precise chemical control of the SPR peak positions via ligand exchange.
由于复杂的物理/化学效应和实验样本的不确定性,在小颗粒极限下,表面等离子体共振(SPR)的尺寸依赖性理解较差。在本文中,我们报告了一种合成具有高度均匀形态和窄尺寸分布的理想胶体 Ag 纳米粒子的方法。呈现了粒径在 d 约 2-20nm 范围内的光学测量和理论分析。SPR 吸收带表现出异常行为:随着尺寸从 d 约 20nm 减小,它发生蓝移,但在 d 约 12nm 附近发生反转,并且强烈红移。多层 Mie 理论模型与观察结果非常吻合,表明由于化学相互作用,最外层原子层中的电子电导率降低是红移的原因。我们通过实验证明通过配体交换对 SPR 峰位置进行精确的化学控制,证实了这一观点。