Suppr超能文献

生物的纳米级界面。

Nanoscale interfaces to biology.

机构信息

Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

出版信息

Curr Opin Chem Biol. 2010 Oct;14(5):616-22. doi: 10.1016/j.cbpa.2010.06.186. Epub 2010 Jul 30.

Abstract

Nanotechnology has held great promise for revolutionizing biology. The biological behavior of nanomaterials depends primarily on how they interface to biomolecules and their surroundings. Unfortunately, interface issues like non-specific adsorption are still the biggest obstacles to the success of nanobiotechnology and nanomedicine, and have held back widespread practical use of nanotechnology in biology. Not only does the biological interface of nanoparticles (NPs) need to be understood and controlled, but also NPs must be treated as biological entities rather than inorganic ones. Furthermore, one can adopt an engineering perspective of the NP-biological interface, realizing that it has unique, exploitable properties.

摘要

纳米技术在生物学领域具有巨大的变革潜力。纳米材料的生物学行为主要取决于它们与生物分子及其周围环境的相互作用。不幸的是,界面问题(如非特异性吸附)仍然是纳米生物技术和纳米医学成功的最大障碍,也阻碍了纳米技术在生物学中的广泛实际应用。不仅需要理解和控制纳米颗粒(NPs)的生物学界面,而且还必须将 NPs 视为生物实体,而不是无机实体。此外,可以采用 NP-生物界面的工程学视角,认识到它具有独特的、可开发的特性。

相似文献

1
Nanoscale interfaces to biology.
Curr Opin Chem Biol. 2010 Oct;14(5):616-22. doi: 10.1016/j.cbpa.2010.06.186. Epub 2010 Jul 30.
2
In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy.
Acc Chem Res. 2017 Feb 21;50(2):387-395. doi: 10.1021/acs.accounts.6b00579. Epub 2017 Feb 1.
3
Nanoparticle interface to biology: applications in probing and modulating biological processes.
Crit Rev Biomed Eng. 2013;41(4-5):323-41. doi: 10.1615/critrevbiomedeng.2014010490.
4
DNA materials: bridging nanotechnology and biotechnology.
Acc Chem Res. 2014 Jun 17;47(6):1902-11. doi: 10.1021/ar5001082. Epub 2014 Jun 2.
5
Dynamic nanoparticle assemblies.
Acc Chem Res. 2012 Nov 20;45(11):1916-26. doi: 10.1021/ar200305f. Epub 2012 Mar 26.
6
Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation.
J Microsc. 2020 Dec;280(3):194-203. doi: 10.1111/jmi.12910. Epub 2020 Jun 2.
7
Nanoscale thermal analysis for nanomedicine by nanocalorimetry.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012 Jan-Feb;4(1):31-41. doi: 10.1002/wnan.155. Epub 2011 Jul 15.
8
Nanobiotechnology: synthetic biology meets materials science.
Curr Opin Biotechnol. 2013 Aug;24(4):551-4. doi: 10.1016/j.copbio.2013.06.003. Epub 2013 Jul 12.
9
'Bio-nano interactions: new tools, insights and impacts': summary of the Royal Society discussion meeting.
Philos Trans R Soc Lond B Biol Sci. 2015 Feb 5;370(1661):20140162. doi: 10.1098/rstb.2014.0162.
10
Understanding biophysicochemical interactions at the nano-bio interface.
Nat Mater. 2009 Jul;8(7):543-57. doi: 10.1038/nmat2442. Epub 2009 Jun 14.

引用本文的文献

1
Ce-based solid-phase catalysts for phosphate hydrolysis as new tools for next-generation nanoarchitectonics.
Sci Technol Adv Mater. 2023 Sep 8;24(1):2250705. doi: 10.1080/14686996.2023.2250705. eCollection 2023.
2
Structural characterization of protein-material interfacial interactions using lysine reactivity profiling-mass spectrometry.
Nat Protoc. 2023 Aug;18(8):2600-2623. doi: 10.1038/s41596-023-00849-0. Epub 2023 Jul 17.
3
DNA-nanoparticle interactions: Formation of a DNA corona and its effects on a protein corona.
Biointerphases. 2020 Oct 1;15(5):051006. doi: 10.1116/6.0000439.
4
The role of human serum and solution chemistry in fibrinogen peptide-nanoparticle interactions.
Nanoscale Adv. 2020 Jun 1;2(6):2429-2440. doi: 10.1039/C9NA00793H. Epub 2020 Apr 21.
5
Automation and low-cost proteomics for characterization of the protein corona: experimental methods for big data.
Anal Bioanal Chem. 2020 Sep;412(24):6543-6551. doi: 10.1007/s00216-020-02726-1. Epub 2020 Jun 4.
6
Protein Corona in Response to Flow: Effect on Protein Concentration and Structure.
Biophys J. 2018 Jul 17;115(2):209-216. doi: 10.1016/j.bpj.2018.02.036. Epub 2018 Apr 9.
7
Nanoparticle-Cell Interactions: Relevance for Public Health.
J Phys Chem B. 2018 Jan 25;122(3):1009-1016. doi: 10.1021/acs.jpcb.7b08650. Epub 2017 Nov 21.
9
Effect of the Protein Corona on Antibody-Antigen Binding in Nanoparticle Sandwich Immunoassays.
Bioconjug Chem. 2017 Jan 18;28(1):230-238. doi: 10.1021/acs.bioconjchem.6b00523. Epub 2016 Dec 8.
10
Combining an optical resonance biosensor with enzyme activity kinetics to understand protein adsorption and denaturation.
Biomaterials. 2015 Jan;38:86-96. doi: 10.1016/j.biomaterials.2014.10.002. Epub 2014 Nov 1.

本文引用的文献

1
Structure of cytochrome c at the interface with magnetic CoFeOnanoparticles.
Soft Matter. 2008 Feb 21;4(3):554-559. doi: 10.1039/b711937b.
2
Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science.
Angew Chem Int Ed Engl. 2001 Nov 19;40(22):4128-4158. doi: 10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S.
3
Gold nanorods: from synthesis and properties to biological and biomedical applications.
Adv Mater. 2009 Dec 28;21(48):4880-4910. doi: 10.1002/adma.200802789. Epub 2009 Jul 24.
4
Reducing non-specific binding and uptake of nanoparticles and improving cell targeting with an antifouling PEO-b-PgammaMPS copolymer coating.
Biomaterials. 2010 Jul;31(20):5397-407. doi: 10.1016/j.biomaterials.2010.03.036. Epub 2010 Apr 15.
5
Enhancement of in vitro translation by gold nanoparticle--DNA conjugates.
ACS Nano. 2010 May 25;4(5):2555-60. doi: 10.1021/nn100362m.
6
InAs(ZnCdS) quantum dots optimized for biological imaging in the near-infrared.
J Am Chem Soc. 2010 Jan 20;132(2):470-1. doi: 10.1021/ja908250r.
7
Design considerations for tumour-targeted nanoparticles.
Nat Nanotechnol. 2010 Jan;5(1):42-7. doi: 10.1038/nnano.2009.314. Epub 2009 Nov 1.
9
10
Understanding biophysicochemical interactions at the nano-bio interface.
Nat Mater. 2009 Jul;8(7):543-57. doi: 10.1038/nmat2442. Epub 2009 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验