Suppr超能文献

使用 MAQC-II 微阵列基因表达数据比较批次效应消除方法以增强预测性能。

A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data.

机构信息

Systems Analytics Inc., Waltham, MA, USA.

出版信息

Pharmacogenomics J. 2010 Aug;10(4):278-91. doi: 10.1038/tpj.2010.57.

Abstract

Batch effects are the systematic non-biological differences between batches (groups) of samples in microarray experiments due to various causes such as differences in sample preparation and hybridization protocols. Previous work focused mainly on the development of methods for effective batch effects removal. However, their impact on cross-batch prediction performance, which is one of the most important goals in microarray-based applications, has not been addressed. This paper uses a broad selection of data sets from the Microarray Quality Control Phase II (MAQC-II) effort, generated on three microarray platforms with different causes of batch effects to assess the efficacy of their removal. Two data sets from cross-tissue and cross-platform experiments are also included. Of the 120 cases studied using Support vector machines (SVM) and K nearest neighbors (KNN) as classifiers and Matthews correlation coefficient (MCC) as performance metric, we find that Ratio-G, Ratio-A, EJLR, mean-centering and standardization methods perform better or equivalent to no batch effect removal in 89, 85, 83, 79 and 75% of the cases, respectively, suggesting that the application of these methods is generally advisable and ratio-based methods are preferred.

摘要

批次效应是指在微阵列实验中,由于各种原因(如样品制备和杂交方案的差异)导致批次(组)之间存在系统性的非生物学差异。以前的工作主要集中在开发有效去除批次效应的方法上。然而,批次效应对跨批次预测性能的影响(这是基于微阵列应用的最重要目标之一)尚未得到解决。本文使用来自 Microarray Quality Control Phase II(MAQC-II)计划的广泛选择的数据,这些数据是在三个具有不同批次效应原因的微阵列平台上生成的,用于评估去除批次效应的效果。还包括两个来自跨组织和跨平台实验的数据。在使用支持向量机(SVM)和 K 最近邻(KNN)作为分类器以及 Matthews 相关系数(MCC)作为性能指标研究的 120 个案例中,我们发现 Ratio-G、Ratio-A、EJLR、均值中心化和标准化方法在 89%、85%、83%、79%和 75%的案例中表现优于或等同于不进行批次效应去除,这表明这些方法的应用通常是明智的,并且基于比率的方法是首选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0752/2920074/852b147c88a2/tpj201057f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验