Zenker Sven, Kim Hyung Kook, Clermont Gilles, Pinsky Michael R
Cardiopulmonary Research Laboratory, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
Pacing Clin Electrophysiol. 2013 Jan;36(1):13-23. doi: 10.1111/j.1540-8159.2012.03496.x. Epub 2012 Aug 16.
Quantification of global ventricular rotational deformation, expressed as twist or torsion, and its dynamic changes is important in understanding the pathophysiology of heart disease and its therapy. Various techniques, such as sonomicrometry, allow tracking of specific sites within the myocardium. Quantification of twist from such data requires a longitudinal reference axis of rotation. Current methods require specific positioning and numbers of myocardial markers and assumptions about temporal positional evolution that may be violated during dyssynchronous contraction.
We present a new method to assess myocardial twist that makes minimal fully explicit assumptions while removing extraneous assumptions, by performing a least squares orthogonal distance regression of all position data on an ellipsoidal ventricular model. Rotational deformation is quantified in terms of the ellipsoid's internal coordinate system, allowing intuitive visualization.
We tested this method on a set of sparse, noisy sonomicrometric crystal data in dogs under different pacing regimes to model dyssynchrony and cardiac resynchronization. We found that this method yielded robust and plausible data. This technique is also fully automated while identifying when data may be insufficient for reliable quantification of rotational deformation.
This approach may allow future analysis of myocardial contraction with less tracking sites and relaxed positioning requirements while identifying situations where data are insufficient for reliable quantification of rotational deformation.
以扭转或扭矩表示的整体心室旋转变形及其动态变化的量化,对于理解心脏病的病理生理学及其治疗具有重要意义。各种技术,如超声心动图,可追踪心肌内的特定部位。从这些数据中量化扭转需要一个纵向旋转参考轴。目前的方法需要特定的心肌标记物定位和数量,以及关于时间位置演变的假设,而这些假设在不同步收缩期间可能会被违反。
我们提出了一种评估心肌扭转的新方法,该方法通过对椭圆形心室模型上的所有位置数据进行最小二乘正交距离回归,在去除无关假设的同时,做出最少的完全明确的假设。旋转变形根据椭球体的内部坐标系进行量化,从而实现直观的可视化。
我们在不同起搏模式下对一组犬的稀疏、嘈杂的超声心动图晶体数据进行了测试,以模拟不同步和心脏再同步。我们发现该方法产生了可靠且合理的数据。该技术也是完全自动化的,同时能识别数据何时可能不足以可靠地量化旋转变形。
这种方法可能允许未来在跟踪部位较少和定位要求较宽松的情况下分析心肌收缩,同时识别数据不足以可靠地量化旋转变形的情况。