Department of Biochemistry, Stanford University, Stanford, California 94035, USA.
Biochemistry. 2010 Sep 7;49(35):7414-6. doi: 10.1021/bi101123g.
We propose a rapid chemical strategy for identifying base pairs in structured nucleic acid systems. The approach goes beyond traditional chemical mapping approaches by monitoring perturbations of each residue's chemical accessibility in response to systematic mutagenesis of residues that are distant in sequence but nearby in three dimensions. As a proof of concept, we present high-throughput dimethyl sulfate accessibility data for a chimeric DNA/RNA system in which every possible sequence variation and deletion in a 20 bp region has been synthesized and tested. The data demonstrate that 88% of the system's base pairs can be robustly inferred, with A/A and T/C DNA/RNA mismatches giving the strongest signals. These results point to the feasibility of rapid base pair inference in larger and more complex nucleic acid systems with unknown structure.
我们提出了一种快速的化学策略,用于鉴定结构核酸系统中的碱基对。该方法通过监测每个残基的化学可及性在序列上相距较远但在三维空间上相邻的残基的系统诱变中的变化,超越了传统的化学作图方法。作为概念验证,我们提出了一个嵌合 DNA/RNA 系统的高通量硫酸二甲酯可及性数据,其中已经合成并测试了 20 个碱基对区域中每个可能的序列变异和缺失。该数据表明,88%的系统碱基对可以被可靠地推断出来,A/A 和 T/C DNA/RNA 错配给出了最强的信号。这些结果表明,在具有未知结构的更大和更复杂的核酸系统中,快速碱基对推断是可行的。