Suppr超能文献

膜弹性能量对视紫红质功能的贡献。

Contribution of membrane elastic energy to rhodopsin function.

机构信息

Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.

出版信息

Biophys J. 2010 Aug 4;99(3):817-24. doi: 10.1016/j.bpj.2010.04.068.

Abstract

We considered the issue of whether shifts in the metarhodopsin I (MI)-metarhodopsin II (MII) equilibrium from lipid composition are fully explicable by differences in bilayer curvature elastic stress. A series of six lipids with known spontaneous radii of monolayer curvature and bending elastic moduli were added at increasing concentrations to the matrix lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and the MI-MII equilibrium measured by flash photolysis followed by recording UV-vis spectra. The average area-per-lipid molecule and the membrane hydrophobic thickness were derived from measurements of the (2)H NMR order parameter profile of the palmitic acid chain in POPC. For the series of ethanolamines with different levels of headgroup methylation, shifts in the MI-MII equilibrium correlated with changes in membrane elastic properties as expressed by the product of spontaneous radius of monolayer curvature, bending elastic modulus, and lateral area per molecule. However, for the entire series of lipids, elastic energy explained the shifts only partially. Additional contributions correlated with the capability of the ethanolamine headgroups to engage in hydrogen bonding with the protein, independent of the state of ethanolamine methylation, with introduction of polyunsaturated sn-2 hydrocarbon chains, and with replacement of the palmitic acid sn-1 chains by oleic acid. The experiments point to the importance of interactions of rhodopsin with particular lipid species in the first layer of lipids surrounding the protein as well as to membrane elastic stress in the lipid-protein domain.

摘要

我们考虑了视紫红质 I(MI)-视紫红质 II(MII)平衡从脂质组成的转变是否可以完全由双层曲率弹性应力的差异来解释。一系列具有已知单层曲率自发半径和弯曲弹性模量的六种脂质以递增浓度添加到基质脂质 1-棕榈酰-2-油酰-sn-甘油-3-磷酸胆碱(POPC)中,并通过闪光光解随后记录 UV-vis 光谱来测量 MI-MII 平衡。从 POPC 中棕榈酸链的(2)H NMR 序参数分布的测量中得出了平均每个脂质分子的面积和膜疏水性厚度。对于具有不同头部基团甲基化水平的乙醇胺系列,MI-MII 平衡的转变与膜弹性性质的变化相关,这些性质由单层曲率自发半径、弯曲弹性模量和每个分子的横截面积的乘积来表示。然而,对于整个脂质系列,弹性能量仅部分解释了转变。额外的贡献与乙醇胺头部基团与蛋白质结合的能力相关,与乙醇胺甲基化的状态无关,与多不饱和 sn-2 烃链的引入以及棕榈酸 sn-1 链被油酸取代相关。这些实验表明了在蛋白质周围的第一层脂质中视紫红质与特定脂质种类相互作用的重要性,以及脂质-蛋白质区域中的膜弹性应力的重要性。

相似文献

1
Contribution of membrane elastic energy to rhodopsin function.
Biophys J. 2010 Aug 4;99(3):817-24. doi: 10.1016/j.bpj.2010.04.068.
4
The role of the lipid matrix for structure and function of the GPCR rhodopsin.
Biochim Biophys Acta. 2012 Feb;1818(2):234-40. doi: 10.1016/j.bbamem.2011.08.034. Epub 2011 Sep 5.
6
Modulation of rhodopsin function by properties of the membrane bilayer.
Chem Phys Lipids. 1994 Sep 6;73(1-2):159-80. doi: 10.1016/0009-3084(94)90180-5.
7
Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids.
Biochemistry. 2002 May 21;41(20):6354-68. doi: 10.1021/bi011995g.
8
Membrane Curvature Revisited-the Archetype of Rhodopsin Studied by Time-Resolved Electronic Spectroscopy.
Biophys J. 2021 Feb 2;120(3):440-452. doi: 10.1016/j.bpj.2020.11.007. Epub 2020 Nov 18.
9
Effect of ethanol on metarhodopsin II formation is potentiated by phospholipid polyunsaturation.
Biochemistry. 1994 Nov 1;33(43):12752-6. doi: 10.1021/bi00209a004.
10
Physiological changes in bilayer thickness induced by cholesterol control GPCR rhodopsin function.
Biophys J. 2023 Mar 21;122(6):973-983. doi: 10.1016/j.bpj.2022.11.2937. Epub 2022 Nov 23.

引用本文的文献

1
Direct effect of membrane environment on the activation of mGluR2 revealed by single-molecule FRET.
Structure. 2025 Apr 3;33(4):718-727.e4. doi: 10.1016/j.str.2025.01.011. Epub 2025 Feb 4.
2
Membrane mediated mechanical stimuli produces distinct active-like states in the AT1 receptor.
Nat Commun. 2023 Aug 4;14(1):4690. doi: 10.1038/s41467-023-40433-4.
3
Special issue for Klaus Gawrisch.
Biophys J. 2023 Mar 21;122(6):E1-E8. doi: 10.1016/j.bpj.2023.02.022. Epub 2023 Mar 15.
4
Physiological changes in bilayer thickness induced by cholesterol control GPCR rhodopsin function.
Biophys J. 2023 Mar 21;122(6):973-983. doi: 10.1016/j.bpj.2022.11.2937. Epub 2022 Nov 23.
5
Editorial: The key role of lipids in the regulation of ion channels.
Front Physiol. 2022 Sep 7;13:1000082. doi: 10.3389/fphys.2022.1000082. eCollection 2022.
6
Phospholipid headgroups govern area per lipid and emergent elastic properties of bilayers.
Biophys J. 2022 Nov 1;121(21):4205-4220. doi: 10.1016/j.bpj.2022.09.005. Epub 2022 Sep 9.
7
Molecular mechanisms of spontaneous curvature and softening in complex lipid bilayer mixtures.
Biophys J. 2022 Sep 6;121(17):3188-3199. doi: 10.1016/j.bpj.2022.07.036. Epub 2022 Aug 4.
8
Studying KcsA Channel Clustering Using Single Channel Voltage-Clamp Fluorescence Imaging.
Front Physiol. 2022 Jun 3;13:863375. doi: 10.3389/fphys.2022.863375. eCollection 2022.
9
Curvature-based sorting of eight lipid types in asymmetric buckled plasma membrane models.
Biophys J. 2022 Jun 7;121(11):2060-2068. doi: 10.1016/j.bpj.2022.05.002. Epub 2022 May 5.
10
Insights into lipid-protein interactions from computer simulations.
Biophys Rev. 2021 Nov 3;13(6):1019-1027. doi: 10.1007/s12551-021-00876-9. eCollection 2021 Dec.

本文引用的文献

1
Insights from biophysical studies on the role of polyunsaturated fatty acids for function of G-protein coupled membrane receptors.
Prostaglandins Leukot Essent Fatty Acids. 2008 Sep-Nov;79(3-5):131-4. doi: 10.1016/j.plefa.2008.09.002. Epub 2008 Nov 11.
2
Importance of direct interactions with lipids for the function of the mechanosensitive channel MscL.
Biochemistry. 2008 Nov 18;47(46):12175-84. doi: 10.1021/bi801352a. Epub 2008 Oct 25.
3
Lipid-rhodopsin hydrophobic mismatch alters rhodopsin helical content.
J Am Chem Soc. 2008 Sep 17;130(37):12465-71. doi: 10.1021/ja803599x. Epub 2008 Aug 20.
4
Internal hydration increases during activation of the G-protein-coupled receptor rhodopsin.
J Mol Biol. 2008 Aug 29;381(2):478-86. doi: 10.1016/j.jmb.2008.05.036. Epub 2008 May 22.
5
High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation.
Proc Natl Acad Sci U S A. 2008 May 27;105(21):7439-44. doi: 10.1073/pnas.0802515105. Epub 2008 May 19.
6
Structure and dynamics of polyunsaturated hydrocarbon chains in lipid bilayers-significance for GPCR function.
Chem Phys Lipids. 2008 May;153(1):64-75. doi: 10.1016/j.chemphyslip.2008.02.016. Epub 2008 Mar 13.
8
Docosahexaenoyl chains isomerize on the sub-nanosecond time scale.
J Am Chem Soc. 2007 May 30;129(21):6678-9. doi: 10.1021/ja068856c. Epub 2007 May 4.
9
Evidence for specificity in lipid-rhodopsin interactions.
J Biol Chem. 2006 Nov 3;281(44):33233-41. doi: 10.1074/jbc.M603059200. Epub 2006 Sep 7.
10
Effect of average phospholipid curvature on supported bilayer formation on glass by vesicle fusion.
Biophys J. 2006 Feb 15;90(4):1241-8. doi: 10.1529/biophysj.105.069435. Epub 2005 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验