Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA.
Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14845-50. doi: 10.1073/pnas.1009874107. Epub 2010 Aug 3.
The direct and indirect pathways of the basal ganglia have been proposed to oppositely regulate locomotion and differentially contribute to pathological behaviors. Analysis of the distinct contributions of each pathway to behavior has been a challenge, however, due to the difficulty of selectively investigating the neurons comprising the two pathways using conventional techniques. Here we present two mouse models in which the function of striatonigral or striatopallidal neurons is selectively disrupted due to cell type-specific deletion of the striatal signaling protein dopamine- and cAMP-regulated phosphoprotein Mr 32kDa (DARPP-32). Using these mice, we found that the loss of DARPP-32 in striatonigral neurons decreased basal and cocaine-induced locomotion and abolished dyskinetic behaviors in response to the Parkinson's disease drug L-DOPA. Conversely, the loss of DARPP-32 in striatopallidal neurons produced a robust increase in locomotor activity and a strongly reduced cataleptic response to the antipsychotic drug haloperidol. These findings provide insight into the selective contributions of the direct and indirect pathways to striatal motor behaviors.
基底神经节的直接和间接通路被认为相反地调节运动,并对病理性行为有不同的贡献。然而,由于使用传统技术难以选择性地研究构成两条通路的神经元,因此分析每条通路对行为的不同贡献一直是一个挑战。在这里,我们提出了两种小鼠模型,由于纹状体信号蛋白多巴胺和 cAMP 调节的磷蛋白 Mr 32kDa(DARPP-32)的细胞类型特异性缺失,导致纹状体苍白球或纹状体神经元的功能选择性中断。使用这些小鼠,我们发现纹状体苍白球神经元中 DARPP-32 的缺失减少了基础和可卡因诱导的运动,并消除了对帕金森病药物 L-DOPA 的运动障碍行为。相反,纹状体神经元中 DARPP-32 的缺失导致运动活性显著增加,并对抗精神病药物氟哌啶醇的强直反应大大降低。这些发现为直接和间接通路对纹状体运动行为的选择性贡献提供了深入了解。