Suppr超能文献

一种用于选择性调节纹状体苍白球神经元中 cAMP 产生的 Gαs DREADD 小鼠。

A Gαs DREADD mouse for selective modulation of cAMP production in striatopallidal neurons.

机构信息

Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.

出版信息

Neuropsychopharmacology. 2013 Apr;38(5):854-62. doi: 10.1038/npp.2012.251. Epub 2012 Dec 5.

Abstract

Here, we describe a newly generated transgenic mouse in which the Gs DREADD (rM3Ds), an engineered G protein-coupled receptor, is selectively expressed in striatopallidal medium spiny neurons (MSNs). We first show that in vitro, rM3Ds can couple to Gαolf and induce cAMP accumulation in cultured neurons and HEK-T cells. The rM3Ds was then selectively and stably expressed in striatopallidal neurons by creating a transgenic mouse in which an adenosine2A (adora2a) receptor-containing bacterial artificial chromosome was employed to drive rM3Ds expression. In the adora2A-rM3Ds mouse, activation of rM3Ds by clozapine-N-oxide (CNO) induces DARPP-32 phosphorylation, consistent with the known consequence of activation of endogenous striatal Gαs-coupled GPCRs. We then tested whether CNO administration would produce behavioral responses associated with striatopallidal Gs signaling and in this regard CNO dose-dependently decreases spontaneous locomotor activity and inhibits novelty induced locomotor activity. Last, we show that CNO prevented behavioral sensitization to amphetamine and increased AMPAR/NMDAR ratios in transgene-expressing neurons of the nucleus accumbens shell. These studies demonstrate the utility of adora2a-rM3Ds transgenic mice for the selective and noninvasive modulation of Gαs signaling in specific neuronal populations in vivo.This unique tool provides a new resource for elucidating the roles of striatopallidal MSN Gαs signaling in other neurobehavioral contexts.

摘要

在这里,我们描述了一种新生成的转基因小鼠,其中 Gs DREADD(rM3Ds),一种工程化的 G 蛋白偶联受体,在纹状体苍白球中间神经元(MSNs)中选择性表达。我们首先表明,在体外,rM3Ds 可以与 Gαolf 偶联并诱导培养神经元和 HEK-T 细胞中的 cAMP 积累。然后,通过创建一种转基因小鼠,其中使用含有腺苷 2A(adora2a)受体的细菌人工染色体来驱动 rM3Ds 表达,使 rM3Ds 选择性和稳定地表达在纹状体苍白球神经元中。在 adora2A-rM3Ds 小鼠中,氯氮平-N-氧化物(CNO)激活 rM3Ds 会诱导 DARPP-32 磷酸化,这与内源性纹状体 Gαs 偶联 GPCR 激活的已知后果一致。然后,我们测试了 CNO 给药是否会产生与纹状体苍白球 Gs 信号相关的行为反应,在这方面,CNO 剂量依赖性地降低自发运动活性并抑制新奇诱导的运动活性。最后,我们表明,CNO 可防止对安非他命的行为敏化,并增加核壳伏隔核中转基因表达神经元中的 AMPAR/NMDAR 比值。这些研究证明了 adora2a-rM3Ds 转基因小鼠在体内选择性和非侵入性调节特定神经元群体中的 Gαs 信号的用途。这种独特的工具为阐明纹状体苍白球 MSN Gαs 信号在其他神经行为背景中的作用提供了新的资源。

相似文献

1
A Gαs DREADD mouse for selective modulation of cAMP production in striatopallidal neurons.
Neuropsychopharmacology. 2013 Apr;38(5):854-62. doi: 10.1038/npp.2012.251. Epub 2012 Dec 5.
2
Histone H3 phosphorylation is under the opposite tonic control of dopamine D2 and adenosine A2A receptors in striatopallidal neurons.
Neuropsychopharmacology. 2009 Jun;34(7):1710-20. doi: 10.1038/npp.2008.228. Epub 2009 Jan 21.
5
Striatal Distribution and Cytoarchitecture of Dopamine Receptor Subtype 1 and 2: Evidence from Double-Labeling Transgenic Mice.
Front Neural Circuits. 2017 Aug 17;11:57. doi: 10.3389/fncir.2017.00057. eCollection 2017.
7
mGlu5R promotes glutamate AMPA receptor phosphorylation via activation of PKA/DARPP-32 signaling in striatopallidal medium spiny neurons.
Neuropharmacology. 2013 Mar;66:179-86. doi: 10.1016/j.neuropharm.2012.03.025. Epub 2012 Apr 7.
9
Gs-DREADD Knock-In Mice for Tissue-Specific, Temporal Stimulation of Cyclic AMP Signaling.
Mol Cell Biol. 2017 Apr 14;37(9). doi: 10.1128/MCB.00584-16. Print 2017 May 1.

引用本文的文献

1
A humanized Gs-coupled DREADD for circuit and behavior modulation.
Front Cell Neurosci. 2025 Apr 9;19:1577117. doi: 10.3389/fncel.2025.1577117. eCollection 2025.
3
Separate orexigenic hippocampal ensembles shape dietary choice by enhancing contextual memory and motivation.
Nat Metab. 2025 Feb;7(2):276-296. doi: 10.1038/s42255-024-01194-6. Epub 2025 Jan 15.
4
How is Excitotoxicity Being Modelled in iPSC-Derived Neurons?
Neurotox Res. 2024 Oct 15;42(5):43. doi: 10.1007/s12640-024-00721-3.
5
Chemogenetic Tools and their Use in Studies of Neuropsychiatric Disorders.
Physiol Res. 2024 Aug 30;73(S1):S449-S470. doi: 10.33549/physiolres.935401. Epub 2024 Jul 2.
6
Comparative assessment of the effects of DREADDs and endogenously expressed GPCRs in hippocampal astrocytes on synaptic activity and memory.
Front Cell Neurosci. 2023 Mar 27;17:1159756. doi: 10.3389/fncel.2023.1159756. eCollection 2023.
7
Neural representation and modulation of volitional motivation in response to escalating efforts.
J Physiol. 2023 Feb;601(3):631-645. doi: 10.1113/JP283915. Epub 2023 Jan 13.
8
An accessory prefrontal cortex-thalamus circuit sculpts maternal behavior in virgin female mice.
EMBO J. 2022 Dec 15;41(24):e111648. doi: 10.15252/embj.2022111648. Epub 2022 Nov 7.
9
Neurobiology, Stem Cell Biology, and Immunology: An Emerging Triad for Understanding Tissue Homeostasis and Repair.
Annu Rev Cell Dev Biol. 2022 Oct 6;38:419-446. doi: 10.1146/annurev-cellbio-120320-032429.
10
Advancements in G protein-coupled receptor biosensors to study GPCR-G protein coupling.
Br J Pharmacol. 2023 Jun;180(11):1433-1443. doi: 10.1111/bph.15962. Epub 2022 Oct 17.

本文引用的文献

1
Generation of a synthetic memory trace.
Science. 2012 Mar 23;335(6075):1513-6. doi: 10.1126/science.1214985.
2
Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour.
Nature. 2011 Dec 7;481(7379):71-5. doi: 10.1038/nature10709.
3
Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition.
Science. 2011 Jul 29;333(6042):637-42. doi: 10.1126/science.1205295.
4
Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice.
PLoS One. 2011;6(5):e20360. doi: 10.1371/journal.pone.0020360. Epub 2011 May 27.
5
Drug wanting: behavioral sensitization and relapse to drug-seeking behavior.
Pharmacol Rev. 2011 Jun;63(2):348-65. doi: 10.1124/pr.109.001933. Epub 2011 Apr 13.
6
Remote control of neuronal signaling.
Pharmacol Rev. 2011 Jun;63(2):291-315. doi: 10.1124/pr.110.003020. Epub 2011 Mar 17.
7
Rapid, reversible activation of AgRP neurons drives feeding behavior in mice.
J Clin Invest. 2011 Apr;121(4):1424-8. doi: 10.1172/JCI46229.
8
How addictive drugs disrupt presynaptic dopamine neurotransmission.
Neuron. 2011 Feb 24;69(4):628-49. doi: 10.1016/j.neuron.2011.02.010.
9
The physiology, signaling, and pharmacology of dopamine receptors.
Pharmacol Rev. 2011 Mar;63(1):182-217. doi: 10.1124/pr.110.002642. Epub 2011 Feb 8.
10
Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization.
Nat Neurosci. 2011 Jan;14(1):22-4. doi: 10.1038/nn.2703. Epub 2010 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验