Department of Material Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Department of Material and Chemical Research Laboratories, Industrial technology and research institute (ITRI), Hsinchu, Taiwan.
Sci Rep. 2017 Jul 4;7(1):4604. doi: 10.1038/s41598-017-04062-4.
We present a facile and cost-effective manner to fabricate a highly sensitive and stable surface enhanced Raman scattering (SERS) substrate. First, a silicon nanowire array (SiNWA) is tailored by metal-assisted chemical etching (MaCE) method as a scaffold of the desired SERS substrate. Next, with an oblique angle deposition (OAD) method, optimized gold nanoparticles (AuNPs) are successfully decorated on the surface of the SiNWA. These AuNPs enable a strong localized electric field, providing abundant hot spots to intensify the Raman signals from the targeting molecules. By applying a well-established methodology, Taguchi method, which is invented for designing experiments, the optimized combination of parameters is obtained efficiently. The experimental results are also confirmed by finite-difference time-domain (FDTD) simulation calculations. Besides, a gold metal backplate (AuMBP) is applied to further enhancing the Raman signal intensity. Based on this developed SERS substrate, we demonstrated an enhancement factor (EF) of 1.78 × 10 and a coefficient of variation (CV) of 4.2%. Both EF and CV indicate a highly stable property and the optimized SERS substrate substantially outperform the commercial product. In the end, we also demonstrate a quantitative measurement on practical application of detecting malachite green (MG) with concentration from 10 nM to 100 μM.
我们提出了一种简便且经济高效的方法来制造高灵敏度和稳定的表面增强拉曼散射(SERS)基底。首先,通过金属辅助化学蚀刻(MaCE)方法定制硅纳米线阵列(SiNWA)作为所需 SERS 基底的支架。接下来,通过斜角沉积(OAD)方法,成功地在 SiNWA 表面上装饰了优化的金纳米颗粒(AuNP)。这些 AuNP 能够产生强烈的局部电场,提供丰富的热点来增强目标分子的拉曼信号。通过应用一种成熟的方法,即用于实验设计的田口方法,高效地获得了优化参数的组合。实验结果也通过有限差分时间域(FDTD)模拟计算得到了证实。此外,还应用了金金属背板(AuMBP)来进一步增强拉曼信号强度。基于这个开发的 SERS 基底,我们展示了 1.78×10 的增强因子(EF)和 4.2%的变异系数(CV)。EF 和 CV 均表明其具有高度稳定的特性,优化的 SERS 基底性能明显优于商业产品。最后,我们还展示了在实际应用中对孔雀石绿(MG)进行定量检测的能力,检测浓度范围从 10 nM 到 100 μM。