Suppr超能文献

小分子肽抑制剂破坏细胞质动力蛋白和病毒货物蛋白之间的高亲和力相互作用。

Small peptide inhibitors disrupt a high-affinity interaction between cytoplasmic dynein and a viral cargo protein.

机构信息

Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Department of Biotechnology, Autovia A6 Km 7, 28040 Madrid, Spain.

出版信息

J Virol. 2010 Oct;84(20):10792-801. doi: 10.1128/JVI.01168-10. Epub 2010 Aug 4.

Abstract

Several viruses target the microtubular motor system in early stages of the viral life cycle. African swine fever virus (ASFV) protein p54 hijacks the microtubule-dependent transport by interaction with a dynein light chain (DYNLL1/DLC8). This was shown to be a high-affinity interaction, and the residues gradually disappearing were mapped on DLC8 to define a putative p54 binding surface by nuclear magnetic resonance (NMR) spectroscopy. The potential of short peptides targeting the binding domain to disrupt this high-affinity protein-protein interaction was assayed, and a short peptide sequence was shown to bind and compete with viral protein binding to dynein. Given the complexity and number of proteins involved in cellular transport, the prevention of this viral-DLC8 interaction might not be relevant for successful viral infection. Thus, we tested the capacity of these peptides to interfere with viral infection by disrupting dynein interaction with viral p54. Using this approach, we report on short peptides that inhibit viral growth.

摘要

几种病毒在病毒生命周期的早期靶向微管马达系统。非洲猪瘟病毒(ASFV)蛋白 p54 通过与动力蛋白轻链(DYNLL1/DLC8)相互作用劫持微管依赖性运输。这被证明是一种高亲和力相互作用,并且逐渐消失的残基被映射到 DLC8 上,通过核磁共振(NMR)光谱学定义一个假定的 p54 结合表面。针对结合域的短肽靶向该高亲和力蛋白-蛋白相互作用的潜力进行了检测,并且显示短肽序列结合并与病毒蛋白与动力蛋白的结合竞争。鉴于参与细胞运输的蛋白质的复杂性和数量,防止这种病毒-DLC8 相互作用可能与成功的病毒感染无关。因此,我们通过破坏动力蛋白与病毒 p54 的相互作用来测试这些肽干扰病毒感染的能力。使用这种方法,我们报告了抑制病毒生长的短肽。

相似文献

1
Small peptide inhibitors disrupt a high-affinity interaction between cytoplasmic dynein and a viral cargo protein.
J Virol. 2010 Oct;84(20):10792-801. doi: 10.1128/JVI.01168-10. Epub 2010 Aug 4.
3
The African swine fever virus dynein-binding protein p54 induces infected cell apoptosis.
FEBS Lett. 2004 Jul 2;569(1-3):224-8. doi: 10.1016/j.febslet.2004.06.001.
5
Structure and dynamics of LC8 complexes with KXTQT-motif peptides: swallow and dynein intermediate chain compete for a common site.
J Mol Biol. 2007 Aug 10;371(2):457-68. doi: 10.1016/j.jmb.2007.05.046. Epub 2007 May 24.
6
Structural basis of diverse sequence-dependent target recognition by the 8 kDa dynein light chain.
J Mol Biol. 2001 Feb 9;306(1):97-108. doi: 10.1006/jmbi.2000.4374.
7
Development and characterization of monoclonal antibodies against the N-terminal domain of African swine fever virus structural protein, p54.
Int J Biol Macromol. 2021 Jun 1;180:203-211. doi: 10.1016/j.ijbiomac.2021.03.059. Epub 2021 Mar 16.
9
Genistein inhibits African swine fever virus replication in vitro by disrupting viral DNA synthesis.
Antiviral Res. 2018 Aug;156:128-137. doi: 10.1016/j.antiviral.2018.06.014. Epub 2018 Jun 22.
10
The 8-kDa dynein light chain binds to its targets via a conserved (K/R)XTQT motif.
J Biol Chem. 2001 Apr 27;276(17):14059-66. doi: 10.1074/jbc.M010320200. Epub 2001 Jan 8.

引用本文的文献

1
Viral warfare: unleashing engineered oncolytic viruses to outsmart cancer's defenses.
Front Immunol. 2025 Aug 25;16:1618751. doi: 10.3389/fimmu.2025.1618751. eCollection 2025.
2
ASFV infection induces lipid metabolic disturbances and promotes viral replication.
Front Microbiol. 2025 Jan 7;15:1532678. doi: 10.3389/fmicb.2024.1532678. eCollection 2024.
3
African Swine Fever Virus Host-Pathogen Interactions.
Subcell Biochem. 2023;106:283-331. doi: 10.1007/978-3-031-40086-5_11.
4
Structure and function of African swine fever virus proteins: Current understanding.
Front Microbiol. 2023 Feb 10;14:1043129. doi: 10.3389/fmicb.2023.1043129. eCollection 2023.
6
Targeting Multidrug Resistance With Antimicrobial Peptide-Decorated Nanoparticles and Polymers.
Front Microbiol. 2022 Mar 31;13:831655. doi: 10.3389/fmicb.2022.831655. eCollection 2022.
7
Effect of Clinically Used Microtubule Targeting Drugs on Viral Infection and Transport Function.
Int J Mol Sci. 2022 Mar 22;23(7):3448. doi: 10.3390/ijms23073448.
10
A Review on the Use of Antimicrobial Peptides to Combat Porcine Viruses.
Antibiotics (Basel). 2020 Nov 12;9(11):801. doi: 10.3390/antibiotics9110801.

本文引用的文献

1
Adenovirus transport via direct interaction of cytoplasmic dynein with the viral capsid hexon subunit.
Cell Host Microbe. 2009 Dec 17;6(6):523-35. doi: 10.1016/j.chom.2009.11.006.
2
Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry.
J Virol. 2010 Feb;84(4):2100-9. doi: 10.1128/JVI.01557-09. Epub 2009 Nov 25.
3
Perspectives on NMR in drug discovery: a technique comes of age.
Nat Rev Drug Discov. 2008 Sep;7(9):738-45. doi: 10.1038/nrd2606.
4
Single-molecule analysis of dynein processivity and stepping behavior.
Cell. 2006 Jul 28;126(2):335-48. doi: 10.1016/j.cell.2006.05.046.
5
Processive bidirectional motion of dynein-dynactin complexes in vitro.
Nat Cell Biol. 2006 Jun;8(6):562-70. doi: 10.1038/ncb1421. Epub 2006 May 21.
6
Viral strategies for intracellular trafficking: motors and microtubules.
Traffic. 2006 May;7(5):516-23. doi: 10.1111/j.1600-0854.2006.00408.x.
8
Cytoplasmic dynein nomenclature.
J Cell Biol. 2005 Nov 7;171(3):411-3. doi: 10.1083/jcb.200508078. Epub 2005 Oct 31.
9
Arginine-rich cell penetrating peptides: from endosomal uptake to nuclear delivery.
Cell Mol Life Sci. 2005 Dec;62(23):2739-49. doi: 10.1007/s00018-005-5293-y.
10
Viral stop-and-go along microtubules: taking a ride with dynein and kinesins.
Trends Microbiol. 2005 Jul;13(7):320-7. doi: 10.1016/j.tim.2005.05.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验