Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA.
Neurochem Res. 2020 Mar;45(3):551-560. doi: 10.1007/s11064-018-02708-x. Epub 2019 Jan 9.
Glutamate, the main excitatory neurotransmitter of the vertebrate central nervous system (CNS), is well known as a regulator of neuronal plasticity and neurodevelopment. Such glutamate function is thought to be mediated primarily by signaling through glutamate receptors. Thus, it requires a tight regulation of extracellular glutamate levels and a fine-tuned homeostasis that, when dysregulated, has been associated with a wide range of central pathologies including neuropsychiatric, neurodevelopmental, and neurodegenerative disorders. In the mammalian CNS, extracellular glutamate levels are controlled by a family of sodium-dependent glutamate transporters belonging to the solute carrier family 1 (SLC1) that are also referred to as excitatory amino acid transporters (EAATs). The presumed main function of EAATs has been best described in the context of synaptic transmission where EAATs expressed by astrocytes and neurons effectively regulate extracellular glutamate levels so that synapses can function independently. There is, however, increasing evidence that EAATs are expressed by cells other than astrocytes and neurons, and that they exhibit functions beyond glutamate clearance. In this review, we will focus on the expression and functions of EAATs in the myelinating cells of the CNS, oligodendrocytes. More specifically, we will discuss potential roles of oligodendrocyte-expressed EAATs in contributing to extracellular glutamate homeostasis, and in regulating oligodendrocyte maturation and CNS myelination by exerting signaling functions that have traditionally been associated with glutamate receptors. In addition, we will provide some examples for how dysregulation of oligodendrocyte-expressed EAATs may be involved in the pathophysiology of neurologic diseases.
谷氨酸是脊椎动物中枢神经系统(CNS)的主要兴奋性神经递质,作为神经元可塑性和神经发育的调节剂而广为人知。这种谷氨酸功能被认为主要通过谷氨酸受体信号传导来介导。因此,它需要严格调节细胞外谷氨酸水平和精细的动态平衡,当这种平衡失调时,与广泛的中枢病理学有关,包括神经精神疾病、神经发育和神经退行性疾病。在哺乳动物的中枢神经系统中,细胞外谷氨酸水平由属于溶质载体家族 1(SLC1)的一组钠依赖性谷氨酸转运体家族控制,这些转运体也被称为兴奋性氨基酸转运体(EAATs)。EAATs 的假定主要功能在突触传递的背景下得到了最好的描述,星形胶质细胞和神经元表达的 EAATs 有效地调节细胞外谷氨酸水平,以使突触能够独立发挥功能。然而,越来越多的证据表明,EAATs 不仅在星形胶质细胞和神经元中表达,而且具有谷氨酸清除以外的功能。在这篇综述中,我们将重点介绍 EAAT 在中枢神经系统髓鞘形成细胞——少突胶质细胞中的表达和功能。更具体地说,我们将讨论少突胶质细胞表达的 EAAT 在维持细胞外谷氨酸稳态、调节少突胶质细胞成熟和中枢神经系统髓鞘形成方面的潜在作用,通过发挥传统上与谷氨酸受体相关的信号功能。此外,我们将提供一些例子,说明少突胶质细胞表达的 EAAT 失调如何参与神经疾病的病理生理学。