Olin Neuropsychiatry Research Center, Institute of Living/Hartford Hospital, Hartford, Connecticut 06106, USA.
Biol Psychiatry. 2010 Oct 1;68(7):657-66. doi: 10.1016/j.biopsych.2010.06.002. Epub 2010 Aug 5.
Schizophrenia is a complex genetic disorder, with multiple putative risk genes and many reports of reduced cortical gray matter. Identifying the genetic loci contributing to these structural alterations in schizophrenia (and likely also to normal structural gray matter patterns) could aid understanding of schizophrenia's pathophysiology. We used structural parameters as potential intermediate illness markers to investigate genomic factors derived from single nucleotide polymorphism (SNP) arrays.
We used research quality structural magnetic resonance imaging (sMRI) scans from European American subjects including 33 healthy control subjects and 18 schizophrenia patients. All subjects were genotyped for 367 SNPs. Linked sMRI and genetic (SNP) components were extracted to reveal relationships between brain structure and SNPs, using parallel independent component analysis, a novel multivariate approach that operates effectively in small sample sizes.
We identified an sMRI component that significantly correlated with a genetic component (r = -.536, p < .00005); components also distinguished groups. In the sMRI component, schizophrenia gray matter deficits were in brain regions consistently implicated in previous reports, including frontal and temporal lobes and thalamus (p < .01). These deficits were related to SNPs from 16 genes, several previously associated with schizophrenia risk and/or involved in normal central nervous system development, including AKT, PI3K, SLC6A4, DRD2, CHRM2, and ADORA2A.
Despite the small sample size, this novel analysis method identified an sMRI component including brain areas previously reported to be abnormal in schizophrenia and an associated genetic component containing several putative schizophrenia risk genes. Thus, we identified multiple genes potentially underlying specific structural brain abnormalities in schizophrenia.
精神分裂症是一种复杂的遗传疾病,有多个潜在的风险基因,并存在许多皮质灰质减少的报告。确定导致精神分裂症这些结构改变的遗传基因座(也可能导致正常结构灰质模式)可以帮助理解精神分裂症的病理生理学。我们使用结构参数作为潜在的中间疾病标志物,研究来自单核苷酸多态性(SNP)阵列的遗传因素。
我们使用欧洲裔美国受试者的研究质量结构磁共振成像(sMRI)扫描,包括 33 名健康对照受试者和 18 名精神分裂症患者。所有受试者均进行了 367 个 SNP 的基因分型。使用平行独立成分分析(一种在小样本量下有效运作的新的多变量方法)提取与大脑结构和 SNP 相关的链接 sMRI 和遗传(SNP)成分,以揭示大脑结构与 SNP 之间的关系。
我们确定了一个与遗传成分显著相关的 sMRI 成分(r = -.536,p <.00005);成分也可以区分组。在 sMRI 成分中,精神分裂症灰质缺陷位于先前报告一致涉及的大脑区域,包括额叶、颞叶和丘脑(p <.01)。这些缺陷与来自 16 个基因的 SNP 相关,其中一些与精神分裂症风险相关,或参与正常中枢神经系统发育,包括 AKT、PI3K、SLC6A4、DRD2、CHRM2 和 ADORA2A。
尽管样本量较小,但这种新的分析方法确定了一个包括以前报道的精神分裂症异常的大脑区域的 sMRI 成分和一个包含几个潜在的精神分裂症风险基因的相关遗传成分。因此,我们确定了多个潜在的基因,可能导致精神分裂症的特定结构脑异常。