Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, TX 75231, USA.
J Physiol. 2010 Oct 1;588(Pt 19):3799-808. doi: 10.1113/jphysiol.2010.194506.
This study tested the hypothesis that passive leg heating attenuates α-adrenergic vasoconstriction within that limb. Femoral blood flow (FBF, femoral artery ultrasound Doppler) and femoral vascular conductance (FVC, FBF/mean arterial blood pressure), as well as calf muscle blood flow (CalfBF, ¹³³xenon) and calf vascular conductance (CalfVC) were measured during intra-arterial infusion of an α₁-adrenoreceptor agonist, phenylephrine (PE, 0.025 to 0.8 μg kg₋₁ min₋₁) and an α₂-adrenoreceptor agonist, BHT-933 (1.0 to 10 μg kg₋₁ min₋₁) during normothermia and passive leg heating (water-perfused pant leg). Passive leg heating (∼46◦C water temperature) increased FVC from 4.5 ± 0.5 to 11.9 ± 1.3 ml min₋₁ mmHg₋₁ (P < 0.001). Interestingly, CalfBF (1.8±0.2 vs. 2.8±0.3mlmin₋₁ (100 g)₋₁) and CalfVC (2.0±0.3 vs. 3.9±0.5mlmin₋₁ (100 g)₋₁ mmHg₋₁ ×100) were also increased by this perturbation (P <0.05 for both). Infusion of PE and BHT-933 resulted in greater absolute decreases in FVC during leg heating compared to normothermic conditions (maximal decreases in FVC during heating vs. normothermia: PE: 7.8 ± 1.1 vs. 2.8 ± 0.5 ml min₋₁ mmHg₋₁; BHT-933: 8.6 ± 1.7 vs. 2.1 ± 0.4 ml min₋₁ mmHg₋₁; P < 0.01 for both). However, the nadir FVC during drug infusion was higher during passive leg heating compared to normothermic conditions (FVC at highest dose of respective drugs during heating vs. normothermic conditions: PE: 3.7 ± 0.4 vs. 2.0 ± 0.3 ml min₋₁ mmHg₋₁; BHT-933: 3.8 ± 0.2 vs. 2.1 ± 0.3 ml min₋₁ mmHg₋₁; P < 0.001 for both). Leg heating did not alter the responsiveness of CalfBF or CalfVC to either PE or BHT-933. Taken together, these observations suggest that local heating does not decrease α-adrenergic responsiveness.However, heat-induced vasodilatation opposes α-adrenergic vasoconstriction. Furthermore, passive heating of a limb causes not only an increase in skin blood flow but also in muscle blood flow.
本研究旨在验证假说,即被动腿部加热可减弱该肢体的α-肾上腺素能血管收缩。股动脉血流(通过股动脉超声多普勒测量)和股血管传导度(股血流/平均动脉血压),以及小腿肌肉血流(小腿 ¹³³xenon 测量)和小腿血管传导度(小腿血流/小腿肌肉血流量×100),在正常体温和被动腿部加热(水灌注裤腿)期间,通过动脉内输注α₁-肾上腺素受体激动剂苯肾上腺素(PE,0.025 至 0.8 μg kg₋₁ min₋₁)和α₂-肾上腺素受体激动剂 BHT-933(1.0 至 10 μg kg₋₁ min₋₁)时进行测量。被动腿部加热(约 46◦C 水温)使股血管传导度从 4.5 ± 0.5 增加到 11.9 ± 1.3 ml min₋₁ mmHg₋₁(P < 0.001)。有趣的是,小腿肌肉血流(1.8±0.2 与 2.8±0.3mlmin₋₁ (100 g)₋₁)和小腿血管传导度(2.0±0.3 与 3.9±0.5mlmin₋₁ (100 g)₋₁ mmHg₋₁ ×100)也因这种干扰而增加(两者均 P <0.05)。与正常体温相比,PE 和 BHT-933 输注导致腿部加热时股血管传导度的绝对降低更大(加热时股血管传导度的最大降低与正常体温相比:PE:7.8 ± 1.1 与 2.8 ± 0.5 ml min₋₁ mmHg₋₁;BHT-933:8.6 ± 1.7 与 2.1 ± 0.4 ml min₋₁ mmHg₋₁;两者均 P <0.01)。然而,与正常体温相比,药物输注期间的股血管传导度最低值在被动腿部加热时更高(在加热时的最高剂量下的股血管传导度与正常体温相比:PE:3.7 ± 0.4 与 2.0 ± 0.3 ml min₋₁ mmHg₋₁;BHT-933:3.8 ± 0.2 与 2.1 ± 0.3 ml min₋₁ mmHg₋₁;两者均 P <0.001)。腿部加热并未改变小腿肌肉血流或小腿血管传导度对 PE 或 BHT-933 的反应性。总之,这些观察结果表明,局部加热不会降低α-肾上腺素能的反应性。然而,热诱导的血管舒张与α-肾上腺素能血管收缩相反。此外,肢体的被动加热不仅会增加皮肤血流量,还会增加肌肉血流量。