Suppr超能文献

载有双氯芬酸钠的 Eudragit® L100 和 Eudragit® L100-PLGA 纳米粒的配方和体外特性研究。

Formulation and in vitro characterization of Eudragit® L100 and Eudragit® L100-PLGA nanoparticles containing diclofenac sodium.

机构信息

Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, 25240, Erzurum, Turkey.

出版信息

AAPS PharmSciTech. 2010 Sep;11(3):1250-6. doi: 10.1208/s12249-010-9489-6. Epub 2010 Aug 10.

Abstract

The aim of this study was to formulate and characterize Eudragit® L100 and Eudragit® L100-poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing diclofenac sodium. Diclofenac generates severe adverse effects with risks of toxicity. Thus, nanoparticles were prepared to reduce these drawbacks in the present study. These nanoparticles were evaluated for surface morphology, particle size and size distribution, percentage drug entrapment, and in vitro drug release in pH 6.8. The prepared nanoparticles were almost spherical in shape, as determined by atomic force microscopy. The nanoparticles with varied size (241-274 nm) and 25.8-62% of entrapment efficiency were obtained. The nanoparticles formulations produced the release profiles with an initial burst effect in which diclofenac sodium release ranged between 38% and 47% within 4 h. The extent of drug release from Eudragit® L100 nanoparticles was up to 92% at 12 h. However, Eudragit®/PLGA nanoparticles showed an initial burst release followed by a slower sustained release. The cumulative release at 72 h was 56%, 69%, and 81% for Eudragit®/PLGA (20:80), Eudragit®/PLGA (30:70) and Eudragit®/PLGA (50:50) nanoparticles, respectively. The release profiles and encapsulation efficiencies depended on the amount of Eudragit in the blend. These data demonstrated the efficacy of these nanoparticles in sustaining the diclofenac sodium release profile.

摘要

本研究的目的是制备并表征载有双氯芬酸钠的 Eudragit® L100 和 Eudragit® L100-聚乳酸-羟基乙酸共聚物(PLGA)纳米粒。双氯芬酸钠会产生严重的不良反应,存在毒性风险。因此,本研究制备纳米粒以降低这些副作用。对这些纳米粒进行了表面形态、粒径及粒径分布、药物包封率和在 pH 6.8 下的体外药物释放评估。原子力显微镜观察到,所制备的纳米粒呈近球形。获得了粒径不同(241-274nm)、包封效率为 25.8-62%的纳米粒。这些纳米粒制剂产生了具有初始突释效应的释放曲线,在 4 小时内,双氯芬酸钠的释放范围在 38%-47%之间。在 12 小时内,Eudragit® L100 纳米粒的药物释放程度达到 92%。然而,Eudragit®/PLGA 纳米粒表现出初始突释释放,随后是较慢的持续释放。在 72 小时时,Eudragit®/PLGA(20:80)、Eudragit®/PLGA(30:70)和 Eudragit®/PLGA(50:50)纳米粒的累积释放率分别为 56%、69%和 81%。释放曲线和包封效率取决于混合物中 Eudragit 的量。这些数据表明这些纳米粒能够有效地维持双氯芬酸钠的释放曲线。

相似文献

1
Formulation and in vitro characterization of Eudragit® L100 and Eudragit® L100-PLGA nanoparticles containing diclofenac sodium.
AAPS PharmSciTech. 2010 Sep;11(3):1250-6. doi: 10.1208/s12249-010-9489-6. Epub 2010 Aug 10.
3
Synthesis of biodegradable polymeric nanoparticles and their controlled drug delivery for tuberculosis.
J Biomed Nanotechnol. 2011 Feb;7(1):150-1. doi: 10.1166/jbn.2011.1244.
4
Preparation and characterization of metformin hydrochloride loaded-Eudragit®RSPO and Eudragit®RSPO/PLGA nanoparticles.
Pharm Dev Technol. 2013 May-Jun;18(3):570-6. doi: 10.3109/10837450.2011.604783. Epub 2011 Aug 24.
7
Loading and release of amphotericin-B from biodegradable poly(lactic-co-glycolic acid) nanoparticles.
J Biomed Nanotechnol. 2011 Feb;7(1):118-20. doi: 10.1166/jbn.2011.1230.
10
Modified nanoprecipitation method for preparation of cytarabine-loaded PLGA nanoparticles.
AAPS PharmSciTech. 2010 Sep;11(3):1456-65. doi: 10.1208/s12249-010-9519-4. Epub 2010 Sep 15.

引用本文的文献

2
Treating Burn Infections With Topical Delivery of Positively Charged Norfloxacin-Loaded Lipid-Polymer Hybrid Nanoparticles.
Recent Adv Drug Deliv Formul. 2025;19(2):142-155. doi: 10.2174/0126673878316672241122041157.
4
5
Fabrication and Synthesis of Thiococlchicoside Loaded Matrix Type Transdermal Patch.
Pharm Nanotechnol. 2024;12(2):143-154. doi: 10.2174/2211738511666230606120828.
6
Coprecipitation of Class II NSAIDs with Polymers for Oral Delivery.
Polymers (Basel). 2023 Feb 15;15(4):954. doi: 10.3390/polym15040954.
7
A Systematic Overview of Eudragit Based Copolymer for Smart Healthcare.
Pharmaceutics. 2023 Feb 9;15(2):587. doi: 10.3390/pharmaceutics15020587.

本文引用的文献

1
Multi-stage delivery nano-particle systems for therapeutic applications.
Biochim Biophys Acta. 2011 Mar;1810(3):317-29. doi: 10.1016/j.bbagen.2010.05.004. Epub 2010 May 21.
2
Biodegradable polymeric nanoparticles based drug delivery systems.
Colloids Surf B Biointerfaces. 2010 Jan 1;75(1):1-18. doi: 10.1016/j.colsurfb.2009.09.001. Epub 2009 Sep 8.
3
Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues.
Adv Drug Deliv Rev. 2009 Feb 27;61(2):158-71. doi: 10.1016/j.addr.2008.11.002. Epub 2008 Dec 13.
4
Engineering strategies to enhance nanoparticle-mediated oral delivery.
J Biomater Sci Polym Ed. 2008;19(12):1549-70. doi: 10.1163/156856208786440479.
8
Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles.
Int J Pharm. 2008 Dec 8;364(2):298-327. doi: 10.1016/j.ijpharm.2008.04.042. Epub 2008 May 7.
9
Dual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiency.
Eur J Pharm Biopharm. 2008 Jun;69(2):445-53. doi: 10.1016/j.ejpb.2008.01.013. Epub 2008 Jan 19.
10
The manufacture and characterisation of hot-melt extruded enteric tablets.
Eur J Pharm Biopharm. 2008 May;69(1):264-73. doi: 10.1016/j.ejpb.2007.11.001. Epub 2007 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验