Suppr超能文献

显著癌症预防因子提取:关联规则发现方法。

Significant cancer prevention factor extraction: an association rule discovery approach.

机构信息

School of Computing Sciences, Central Queensland University, Queensland, Australia.

出版信息

J Med Syst. 2011 Jun;35(3):353-67. doi: 10.1007/s10916-009-9372-8. Epub 2009 Oct 3.

Abstract

Cancer is increasing the total number of unexpected deaths around the world. Until now, cancer research could not significantly contribute to a proper solution for the cancer patient, and as a result, the high death rate is uncontrolled. The present research aim is to extract the significant prevention factors for particular types of cancer. To find out the prevention factors, we first constructed a prevention factor data set with an extensive literature review on bladder, breast, cervical, lung, prostate and skin cancer. We subsequently employed three association rule mining algorithms, Apriori, Predictive apriori and Tertius algorithms in order to discover most of the significant prevention factors against these specific types of cancer. Experimental results illustrate that Apriori is the most useful association rule-mining algorithm to be used in the discovery of prevention factors.

摘要

癌症正在增加全球意外死亡的总数。到目前为止,癌症研究还不能为癌症患者提供有效的解决方案,因此,高死亡率仍未得到控制。本研究旨在提取特定类型癌症的显著预防因素。为了找出这些预防因素,我们首先通过广泛的文献回顾,构建了一个膀胱癌、乳腺癌、宫颈癌、肺癌、前列腺癌和皮肤癌的预防因素数据集。随后,我们采用了三种关联规则挖掘算法,即 Apriori、Predictive apriori 和 Tertius 算法,以发现针对这些特定类型癌症的大部分显著预防因素。实验结果表明,Apriori 是发现预防因素时最有用的关联规则挖掘算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验