Suppr超能文献

为了提高学习性能,结合特征选择和集成分类技术:在癌症诊断中的应用。

Toward improving the performance of learning by joining feature selection and ensemble classification techniques: an application for cancer diagnosis.

机构信息

Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, 277000, Shandong, China.

出版信息

J Cancer Res Clin Oncol. 2023 Dec;149(19):16993-17006. doi: 10.1007/s00432-023-05422-6. Epub 2023 Sep 23.

Abstract

INTRODUCTION

Breast cancer is known as the most common type of cancer in women, and this has raised the importance of its diagnosis in medical science as one of the most important issues. In addition to reducing costs, the diagnosis of benign or malignant breast cancer is very important in determining the treatment method.

OBJECTIVE

The purpose of this paper is to present a model based on data mining techniques including feature selection and ensemble classification that can accurately predict breast cancer patients in the early stages.

METHODOLOGY

The proposed breast cancer detection model is developed by joining Adaptive Differential Evolution (ADE) algorithm for feature selection and Learning Vector Quantization (LVQ) neural network for classification. Our proposed model as ADE-LVQ has the ability to automatically and quickly diagnose breast cancer patients into two classes, benign and malignant. As a new evolutionary approach, ADE performs optimal configuration for LVQ neural network in addition to selecting effective features from breast cancer data. Meanwhile, we configure an ensemble classification technique based on LVQ, which significantly improves the prediction performance.

RESULTS

ADE-LVQ has been analyzed from different perspectives on different datasets from Wisconsin breast cancer database. We apply different approaches to handle missing values and improve data quality on this database. The results of the simulations showed that the ADE-LVQ model is more successful than the equivalent and state-of-the-art models in diagnosing breast cancer patients. Also, ADE-LVQ provides better performance with less complexity, considering feature selection and ensemble learning. In particular, ADE-LVQ improves accuracy (up to 3.4%) and runtime (up to 2.3%) on average compared to the existing best method.

CONCLUSION

Combined methods based on data mining techniques for breast cancer diagnosis can help doctors in making better decisions for disease treatment.

摘要

简介

乳腺癌是女性最常见的癌症类型,这使得其诊断在医学领域成为最重要的问题之一。除了降低成本外,良性或恶性乳腺癌的诊断对于确定治疗方法非常重要。

目的

本文旨在提出一种基于数据挖掘技术的模型,包括特征选择和集成分类,以便能够准确预测早期乳腺癌患者。

方法

所提出的乳腺癌检测模型是通过结合自适应差分进化(ADE)算法进行特征选择和学习向量量化(LVQ)神经网络进行分类而开发的。我们提出的模型即 ADE-LVQ 具有将乳腺癌患者自动且快速地诊断为良性和恶性两类的能力。作为一种新的进化方法,ADE 除了从乳腺癌数据中选择有效特征外,还对 LVQ 神经网络进行了最优配置。同时,我们基于 LVQ 配置了一种集成分类技术,这显著提高了预测性能。

结果

在不同数据集上,从威斯康星州乳腺癌数据库的不同角度对 ADE-LVQ 进行了分析。我们应用了不同的方法来处理缺失值并提高数据质量。模拟结果表明,与等效和最先进的模型相比,ADE-LVQ 模型在诊断乳腺癌患者方面更为成功。此外,考虑到特征选择和集成学习,ADE-LVQ 以较低的复杂度提供了更好的性能。特别是与现有的最佳方法相比,ADE-LVQ 平均提高了 3.4%的准确性和 2.3%的运行时间。

结论

基于数据挖掘技术的乳腺癌诊断联合方法可以帮助医生做出更好的疾病治疗决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验