Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, D-82152 Martinsried, Germany.
Phys Chem Chem Phys. 2010 Sep 21;12(35):10154-60. doi: 10.1039/c0cp01048k. Epub 2010 Aug 16.
Neutron scattering, by using deuterium labelling, revealed how intracellular water dynamics, measured in vivo in E. coli, human red blood cells and the extreme halophile, Haloarcula marismortui, depends on the cell type and nature of the cytoplasm. The method uniquely permits the determination of motions on the molecular length (approximately ångstrøm) and time (pico- to nanosecond) scales. In the bacterial and human cells, intracellular water beyond the hydration shells of cytoplasmic macromolecules and membrane faces flows as freely as liquid water. It is not "tamed" by confinement. In contrast, in the extreme halophile archaeon, in addition to free and hydration water an intracellular water component was observed with significantly slowed down translational diffusion. The results are discussed and compared to observations in E. coli and Haloarcula marismortui by deuteron spin relaxation in NMR--a method that is sensitive to water rotational dynamics on a wide range of time scales.
利用氘标记的中子散射揭示了细胞内水动力学如何依赖于细胞类型和细胞质的性质,该动力学是在大肠杆菌、人红细胞和极端嗜盐菌 Haloarcula marismortui 中活体测量的。该方法独特地允许确定分子长度(约为 ångstrøm)和时间(皮秒到纳秒)尺度上的运动。在细菌和人类细胞中,细胞质大分子的水合壳和膜面之外的细胞内水像液态水一样自由流动。它不受限制的影响。相比之下,在极端嗜盐古菌中,除了自由水和水合水之外,还观察到细胞内水的一个成分,其平动扩散明显减慢。结果与通过 NMR 中的氘核自旋弛豫在大肠杆菌和 Haloarcula marismortui 中的观察结果进行了讨论和比较,该方法对广泛时间尺度上水的旋转动力学敏感。