Suppr超能文献

基于水平集的动态对比增强磁共振成像肾脏分割:使用基于总体和个体形状统计的模糊聚类方法

Level-Set-Based Kidney Segmentation from DCE-MRI Using Fuzzy Clustering with Population-Based and Subject-Specific Shape Statistics.

作者信息

El-Melegy Moumen, Kamel Rasha, Abou El-Ghar Mohamed, Alghamdi Norah S, El-Baz Ayman

机构信息

Electrical Engineering Department, Assiut University, Assiut 71515, Egypt.

Computer Science Department, Assiut University, Assiut 71515, Egypt.

出版信息

Bioengineering (Basel). 2022 Nov 5;9(11):654. doi: 10.3390/bioengineering9110654.

Abstract

The segmentation of dynamic contrast-enhanced magnetic resonance images (DCE-MRI) of the kidney is a fundamental step in the early and noninvasive detection of acute renal allograft rejection. In this paper, a new and accurate DCE‑MRI kidney segmentation method is proposed. In this method, fuzzy c-means (FCM) clustering is embedded into a level set method, with the fuzzy memberships being iteratively updated during the level set contour evolution. Moreover, population‑based shape (PB-shape) and subject-specific shape (SS-shape) statistics are both exploited. The PB-shape model is trained offline from ground-truth kidney segmentations of various subjects, whereas the SS-shape model is trained on the fly using the segmentation results that are obtained for a specific subject. The proposed method was evaluated on the real medical datasets of 45 subjects and reports a Dice similarity coefficient (DSC) of 0.953 ± 0.018, an intersection-over-union (IoU) of 0.91 ± 0.033, and 1.10 ± 1.4 in the 95-percentile of Hausdorff distance (HD95). Extensive experiments confirm the superiority of the proposed method over several state-of-the-art level set methods, with an average improvement of 0.7 in terms of HD95. It also offers an HD95 improvement of 9.5 and 3.8 over two deep neural networks based on the U-Net architecture. The accuracy improvements have been experimentally found to be more prominent on low-contrast and noisy images.

摘要

肾脏动态对比增强磁共振图像(DCE-MRI)的分割是急性肾移植排斥反应早期无创检测的基本步骤。本文提出了一种新的、准确的DCE-MRI肾脏分割方法。该方法将模糊c均值(FCM)聚类嵌入到水平集方法中,在水平集轮廓演化过程中迭代更新模糊隶属度。此外,还利用了基于总体的形状(PB形状)和特定于个体的形状(SS形状)统计信息。PB形状模型是根据不同受试者的肾脏分割真值离线训练的,而SS形状模型则利用特定受试者获得的分割结果实时训练。该方法在45名受试者的真实医学数据集上进行了评估,报告的骰子相似系数(DSC)为0.953±0.018,交并比(IoU)为0.91±0.033,在95% Hausdorff距离(HD95)上为1.10±1.4。大量实验证实了该方法相对于几种最新水平集方法的优越性,在HD95方面平均提高了0.7。与基于U-Net架构的两个深度神经网络相比,它在HD95上也分别提高了9.5和3.8。实验发现,在低对比度和噪声图像上,精度提高更为显著。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cb1/9687428/eed33bf0c877/bioengineering-09-00654-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验