Suppr超能文献

耳蜗传出神经支配与功能。

Cochlear efferent innervation and function.

作者信息

Guinan John J

机构信息

Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.

出版信息

Curr Opin Otolaryngol Head Neck Surg. 2010 Oct;18(5):447-53. doi: 10.1097/MOO.0b013e32833e05d6.

Abstract

PURPOSE OF REVIEW

This review covers topics relevant to olivocochlear-efferent anatomy and function for which there are new findings in papers from 2009 to early 2010.

RECENT FINDINGS

Work within the review period has increased our understanding of medial olivocochlear (MOC) mechanisms in outer hair cells, MOC-reflex tuning, MOC effects on distortion product otoacoustic emissions, the time course of MOC effects, MOC effects in psychophysical tests and on understanding speech, MOC effects in attention and learning, and lateral efferent function in binaural hearing. In addition, there are new insights into efferent molecular mechanisms and their effect on cochlear development.

SUMMARY

Techniques for measuring efferent effects using otoacoustic emissions are now well developed and have promise in clinical applications ranging from predicting which patients are susceptible to acoustic trauma to characterizing relationships between efferent activation and learning disabilities. To realize this promise, studies are needed in which these techniques are applied with high standards.

摘要

综述目的

本综述涵盖了与橄榄耳蜗传出神经解剖结构和功能相关的主题,2009年至2010年初发表的论文中有关于这些主题的新发现。

近期发现

在本综述期间的研究增进了我们对外侧橄榄耳蜗(MOC)在外毛细胞中的机制、MOC反射调谐、MOC对畸变产物耳声发射的影响、MOC效应的时间进程、MOC在心理物理学测试及对言语理解中的作用、MOC在注意力和学习中的作用以及双耳听觉中传出神经功能的理解。此外,对传出神经分子机制及其对耳蜗发育的影响有了新的认识。

总结

利用耳声发射测量传出神经效应的技术现已得到充分发展,并有望应用于临床,从预测哪些患者易受声损伤到确定传出神经激活与学习障碍之间的关系。为实现这一前景,需要开展高标准应用这些技术的研究。

相似文献

1
Cochlear efferent innervation and function.
Curr Opin Otolaryngol Head Neck Surg. 2010 Oct;18(5):447-53. doi: 10.1097/MOO.0b013e32833e05d6.
2
Medial olivocochlear efferent reflex inhibition of human cochlear nerve responses.
Hear Res. 2016 Mar;333:216-224. doi: 10.1016/j.heares.2015.09.001. Epub 2015 Sep 11.
4
Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans.
Ear Hear. 2006 Dec;27(6):589-607. doi: 10.1097/01.aud.0000240507.83072.e7.
5
Electrically Evoked Medial Olivocochlear Efferent Effects on Stimulus Frequency Otoacoustic Emissions in Guinea Pigs.
J Assoc Res Otolaryngol. 2017 Feb;18(1):153-163. doi: 10.1007/s10162-016-0593-5. Epub 2016 Oct 31.
6
Responses of medial olivocochlear neurons. Specifying the central pathways of the medial olivocochlear reflex.
Exp Brain Res. 2003 Dec;153(4):491-8. doi: 10.1007/s00221-003-1679-y. Epub 2003 Oct 14.
7
Repeatability of click-evoked otoacoustic emission-based medial olivocochlear efferent assay.
Ear Hear. 2013 Nov-Dec;34(6):789-98. doi: 10.1097/AUD.0b013e3182944c04.
8
Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
Neurosci Lett. 2014 Jan 24;559:132-5. doi: 10.1016/j.neulet.2013.11.059. Epub 2013 Dec 10.
9
Efferent modulation of pre-neural and neural distortion products.
Hear Res. 2017 Dec;356:25-34. doi: 10.1016/j.heares.2017.10.009. Epub 2017 Oct 26.

引用本文的文献

1
Notched noise reveals differential improvement in the neural representation of the sound envelope.
Commun Biol. 2025 Aug 7;8(1):1171. doi: 10.1038/s42003-025-08536-4.
2
Acute Respiratory Tract Infection and Sudden Sensorineural Hearing Loss: A Multinational Cohort Study.
Diagnostics (Basel). 2025 Jun 9;15(12):1462. doi: 10.3390/diagnostics15121462.
3
Effects of stimuli and contralateral noise levels on auditory cortical potentials recorded in school-age children.
PLoS One. 2025 Jan 22;20(1):e0317661. doi: 10.1371/journal.pone.0317661. eCollection 2025.
4
Fast Inhibition Slows and Desynchronizes Mouse Auditory Efferent Neuron Activity.
J Neurosci. 2024 Aug 14;44(33):e0382242024. doi: 10.1523/JNEUROSCI.0382-24.2024.
5
Genetic tools for studying cochlear inhibition.
Front Cell Neurosci. 2024 Mar 15;18:1372948. doi: 10.3389/fncel.2024.1372948. eCollection 2024.
6
The effect of coffee on contralateral suppression of transient evoked otoacoustic emissions.
F1000Res. 2023 Sep 13;11:878. doi: 10.12688/f1000research.122851.2. eCollection 2022.
7
Abnormal outer hair cell efferent innervation in Hoxb1-dependent sensorineural hearing loss.
PLoS Genet. 2023 Sep 22;19(9):e1010933. doi: 10.1371/journal.pgen.1010933. eCollection 2023 Sep.
8
Molecular earplugs to protect the inner ear.
Mol Ther Methods Clin Dev. 2023 Apr 26;29:284-285. doi: 10.1016/j.omtm.2023.04.001. eCollection 2023 Jun 8.
9
Engineering olivocochlear inhibition to reduce acoustic trauma.
Mol Ther Methods Clin Dev. 2023 Feb 26;29:17-31. doi: 10.1016/j.omtm.2023.02.011. eCollection 2023 Jun 8.
10
Effect of Efferent Stimulation on the Differential Sensitivity in Individuals with Normal Hearing.
Indian J Otolaryngol Head Neck Surg. 2022 Dec;74(Suppl 3):4100-4105. doi: 10.1007/s12070-021-02852-x. Epub 2021 Sep 12.

本文引用的文献

2
Overshoot measured physiologically and psychophysically in the same human ears.
Hear Res. 2010 Sep 1;268(1-2):22-37. doi: 10.1016/j.heares.2010.04.007. Epub 2010 Apr 27.
3
Release and elementary mechanisms of nitric oxide in hair cells.
J Neurophysiol. 2010 May;103(5):2494-505. doi: 10.1152/jn.00017.2010. Epub 2010 Mar 10.
4
Cigarette smoking as a risk factor for auditory problems.
Braz J Otorhinolaryngol. 2009 Nov-Dec;75(6):893-902. doi: 10.1016/s1808-8694(15)30556-5.
7
Properties of a nonlinear version of the stimulus-frequency otoacoustic emission.
J Acoust Soc Am. 2010 Feb;127(2):955-69. doi: 10.1121/1.3279832.
9
Prestin and the cholinergic receptor of hair cells: positively-selected proteins in mammals.
Hear Res. 2011 Mar;273(1-2):100-8. doi: 10.1016/j.heares.2009.12.028. Epub 2010 Jan 6.
10
The descending corticocollicular pathway mediates learning-induced auditory plasticity.
Nat Neurosci. 2010 Feb;13(2):253-60. doi: 10.1038/nn.2466. Epub 2009 Dec 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验