Suppr超能文献

基于多尺度和层次特征卷积神经网络的多导联心电图分类

Classification of multi-lead ECG based on multiple scales and hierarchical feature convolutional neural networks.

作者信息

Zhou Feiyan, Fang Duanshu

机构信息

Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin, 541004, China.

Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin, 541004, China.

出版信息

Sci Rep. 2025 May 12;15(1):16418. doi: 10.1038/s41598-025-94127-6.

Abstract

Detecting and classifying arrhythmias is essential in diagnosing cardiovascular diseases. However, current deep learning-based classification methods often encounter difficulties in effectively integrating both the morphological and temporal features of Electrocardiograms (ECGs). To address this challenge, we propose a Convolutional Neural Network (CNN) that incorporates mixed scales and hierarchical features combined with the Lead Encoder Attention (LEA) mechanism for multi-lead ECG classification. We validated the performance of our proposed method using the intrapatient approach of the MIT-BIH Arrhythmia (MIT-BIH-AR) Database and the interpatient approach of the Chinese Cardiovascular Disease Database (CCDD). Our model achieves an Accuracy (Acc) of 99.5% for the classification of normal and abnormal heartbeats in the MIT-BIH-AR database. Our method achieves a TPR95 (NPV under the condition of True Positive Rate being equal to 95 percent) of 78.5% and an Acc of 88.5% when classifying normal and abnormal ECG records from over 150,000 ECG records in the CCDD. The cross-dataset experimental results also confirm the model's strong generalization capability.

摘要

检测和分类心律失常对于诊断心血管疾病至关重要。然而,当前基于深度学习的分类方法在有效整合心电图(ECG)的形态学和时间特征方面常常遇到困难。为应对这一挑战,我们提出了一种卷积神经网络(CNN),该网络结合了混合尺度和层次特征,并与导联编码器注意力(LEA)机制相结合,用于多导联心电图分类。我们使用麻省理工学院-比哈尔心律失常(MIT-BIH-AR)数据库的患者内方法和中国心血管疾病数据库(CCDD)的患者间方法验证了我们提出的方法的性能。我们的模型在MIT-BIH-AR数据库中对正常和异常心跳分类的准确率(Acc)达到了99.5%。在对CCDD中超过150,000份心电图记录进行正常和异常心电图记录分类时,我们的方法实现了78.5%的TPR95(真阳性率等于95%时的阴性预测值)和88.5%的Acc。跨数据集实验结果也证实了该模型强大的泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90df/12069667/0906edb048ec/41598_2025_94127_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验