Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA.
Am J Physiol Heart Circ Physiol. 2010 Nov;299(5):H1505-14. doi: 10.1152/ajpheart.00503.2010. Epub 2010 Aug 20.
Normal cardiac excitability depends on the coordinated activity of specific ion channels and transporters within specialized domains at the plasma membrane and sarcoplasmic reticulum. Ion channel dysfunction due to congenital or acquired defects has been linked to human cardiac arrhythmia. More recently, defects in ion channel-associated proteins have been associated with arrhythmia. Ankyrin-B is a multifunctional adapter protein responsible for targeting select ion channels, transporters, cytoskeletal proteins, and signaling molecules in excitable cells, including neurons, pancreatic β-cells, and cardiomyocytes. Ankyrin-B dysfunction has been linked to cardiac arrhythmia in human patients and ankyrin-B heterozygous (ankyrin-B(+/-)) mice with a phenotype characterized by sinus node dysfunction, susceptibility to ventricular arrhythmias, and sudden death ("ankyrin-B syndrome"). At the cellular level, ankyrin-B(+/-) cells have defects in the expression and membrane localization of the Na(+)/Ca(2+) exchanger and Na(+)-K(+)-ATPase, Ca(2+) overload, and frequent afterdepolarizations, which likely serve as triggers for lethal cardiac arrhythmias. Despite knowledge gathered from mouse models and human patients, the molecular mechanism responsible for cardiac arrhythmias in the setting of ankyrin-B dysfunction remains unclear. Here, we use mathematical modeling to provide new insights into the cellular pathways responsible for Ca(2+) overload and afterdepolarizations in ankyrin-B(+/-) cells. We show that the Na(+)/Ca(2+) exchanger and Na(+)-K(+)-ATPase play related, yet distinct, roles in intracellular Ca(2+) accumulation, sarcoplasmic reticulum Ca(2+) overload, and afterdepolarization generation in ankyrin-B(+/-) cells. These findings provide important insights into the molecular mechanisms underlying a human disease and are relevant for acquired human arrhythmia, where ankyrin-B dysfunction has recently been identified.
正常的心脏兴奋性取决于特定离子通道和转运体在质膜和肌浆网的特殊区域内的协调活动。由于先天性或后天性缺陷导致的离子通道功能障碍与人类心律失常有关。最近,离子通道相关蛋白的缺陷与心律失常有关。锚蛋白-B 是一种多功能衔接蛋白,负责将特定的离子通道、转运体、细胞骨架蛋白和信号分子靶向到兴奋性细胞中,包括神经元、胰腺β细胞和心肌细胞。锚蛋白-B 功能障碍与人类患者的心律失常以及锚蛋白-B 杂合子(ankyrin-B(+/-))小鼠有关,其表型特征为窦房结功能障碍、易发生室性心律失常和猝死(“锚蛋白-B 综合征”)。在细胞水平上,ankyrin-B(+/-)细胞中 Na(+)/Ca(2+)交换体和 Na(+)-K(+)-ATP 酶的表达和膜定位、Ca(2+)超载和频繁的后除极存在缺陷,这些缺陷可能作为致命性心律失常的触发因素。尽管从小鼠模型和人类患者中获得了知识,但在锚蛋白-B 功能障碍的情况下导致心律失常的确切分子机制仍不清楚。在这里,我们使用数学建模为锚蛋白-B(+/-)细胞中 Ca(2+)超载和后除极的细胞途径提供了新的见解。我们表明,Na(+)/Ca(2+)交换体和 Na(+)-K(+)-ATP 酶在 ankyrin-B(+/-)细胞中细胞内 Ca(2+)积累、肌浆网 Ca(2+)超载和后除极产生中发挥相关但不同的作用。这些发现为人类疾病的分子机制提供了重要的见解,并且与获得性人类心律失常相关,最近已经在人类心律失常中鉴定出锚蛋白-B 功能障碍。