BioTechnology Institute, University of Minnesota, 140 Gortner Laboratory, St. Paul, MN 55108, USA.
Biotechnol Prog. 2010 Jul-Aug;26(4):907-18. doi: 10.1002/btpr.406.
Intact cells are the most stable form of nature's photosynthetic machinery. Coating-immobilized microbes have the potential to revolutionize the design of photoabsorbers for conversion of sunlight into fuels. Multi-layer adhesive polymer coatings could spatially combine photoreactive bacteria and algae (complementary biological irradiance spectra) creating high surface area, thin, flexible structures optimized for light trapping, and production of hydrogen (H(2)) from water, lignin, pollutants, or waste organics. We report a model coating system which produced 2.08 +/- 0.01 mmol H(2) m(-2) h(-1) for 4,000 h with nongrowing Rhodopseudomonas palustris, a purple nonsulfur photosynthetic bacterium. This adhesive, flexible, nanoporous Rps. palustris latex coating produced 8.24 +/- 0.03 mol H(2) m(-2) in an argon atmosphere when supplied with acetate and light. A simple low-pressure hydrogen production and trapping system was tested using a 100 cm(2) coating. Rps. palustris CGA009 was combined in a bilayer coating with a carotenoid-less mutant of Rps. palustris (CrtI(-)) deficient in peripheral light harvesting (LH2) function. Cryogenic field emission gun scanning electron microscopy (cryo-FEG-SEM) and high-pressure freezing were used to visualize the microstructure of hydrated coatings. A light interaction and reactivity model was evaluated to predict optimal coating thickness for light absorption using the Kubelka-Munk theory (KMT) of reflectance and absorptance. A two-flux model predicted light saturation thickness with good agreement to observed H(2) evolution rate. A combined materials and modeling approach could be used for guiding cellular engineering of light trapping and reactivity to enhance overall photosynthetic efficiency per meter square of sunlight incident on photocatalysts.
完整细胞是自然界光合作用机器最稳定的形式。涂层固定微生物有可能彻底改变用于将阳光转化为燃料的光吸收体的设计。多层粘性聚合物涂层可以将光反应性细菌和藻类(互补的生物辐照度光谱)空间组合在一起,形成高表面积、薄而灵活的结构,优化用于光捕获和从水、木质素、污染物或废有机物生产氢气(H(2))。我们报告了一种模型涂层系统,该系统在 4000 小时内使用非生长的 Rhodopseudomonas palustris(一种紫色非硫光合细菌)产生了 2.08 +/- 0.01 mmol H(2) m(-2) h(-1)。这种粘性、灵活、纳米多孔的 Rps. palustris 乳胶涂层在提供乙酸盐和光照时,在氩气气氛中产生了 8.24 +/- 0.03 mol H(2) m(-2)。使用 100 cm(2) 的涂层测试了一种简单的低压氢气生产和捕集系统。Rps. palustris CGA009 与缺乏外周光捕获(LH2)功能的 Rps. palustris(CrtI(-))的类胡萝卜素缺失突变体在双层涂层中结合。使用低温场发射枪扫描电子显微镜(cryo-FEG-SEM)和高压冷冻来可视化水合涂层的微观结构。使用光相互作用和反应性模型来评估使用反射率和吸收率的 Kubelka-Munk 理论(KMT)预测光吸收最佳涂层厚度。双通量模型预测了光饱和厚度,与观察到的 H(2)演化速率吻合良好。综合材料和建模方法可用于指导光捕获和反应性的细胞工程,以提高每平方米入射到光催化剂上的太阳光的整体光合作用效率。