Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
Biotechnol Prog. 2010 Jul-Aug;26(4):1126-34. doi: 10.1002/btpr.412.
Human pluripotent stem cells (hPSCs) that include human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) have gained enormous interest as potential sources for regenerative biomedical therapies and model systems for studying early development. Traditionally, mouse embryonic fibroblasts have been used as a supportive feeder layer for the sustained propagation of hPSCs. However, the use of nonhuman-derived feeders presents concerns about the possibility of xenogenic contamination, labor intensiveness, and variability in experimental results in hPSC cultures. Toward addressing some of these concerns, we report the propagation of three different hPSCs on feeder-free extracellular matrix (ECM)-based substrates derived from human fibroblasts. hPSCs propagated in this setting were indistinguishable by multiple criteria, including colony morphology, expression of pluripotency protein markers, trilineage in vitro differentiation, and gene expression patterns, from hPSCs cultured directly on a fibroblast feeder layer. Further, hPSCs maintained a normal karyotype when analyzed after 15 passages in this setting. Development of this ECM-based culture system is a significant advance in hPSC propagation methods as it could serve as a critical component in the development of humanized propagation systems for the production of stable hPSCs and its derivatives for research and therapeutic applications.
人类多能干细胞(hPSCs)包括人类胚胎干细胞(hESCs)和人类诱导多能干细胞(hiPSCs),作为再生生物医学治疗的潜在来源和研究早期发育的模型系统,引起了极大的兴趣。传统上,小鼠胚胎成纤维细胞被用作 hPSCs 持续增殖的支持饲养层。然而,使用非人类来源的饲养层会引起对异种污染、劳动强度大和 hPSC 培养中实验结果变异性的担忧。为了解决其中的一些问题,我们报告了在无饲养层的基于细胞外基质(ECM)的基质上,从人成纤维细胞衍生的三种不同 hPSCs 的增殖。通过多种标准,包括集落形态、多能性蛋白标志物的表达、三系体外分化和基因表达模式,从 hPSCs 在成纤维细胞饲养层上直接培养的 hPSCs 中鉴定出,在这种环境中增殖的 hPSCs 是不可区分的。此外,当在这种环境中分析 15 个传代后,hPSCs 保持正常的核型。这种基于 ECM 的培养系统的发展是 hPSC 增殖方法的重大进展,因为它可以作为开发用于生产稳定 hPSCs 及其衍生物的人源化增殖系统的关键组成部分,用于研究和治疗应用。