Suppr超能文献

五种质粒介导的 AmpC β-内酰胺酶碳青霉烯水解活性的表型和生化比较。

Phenotypic and biochemical comparison of the carbapenem-hydrolyzing activities of five plasmid-borne AmpC β-lactamases.

机构信息

Service de Bactériologie-Hygiène, Centre Hospitalier Universitaire d'Amiens, Hôpital Nord, Place Victor Pauchet, Amiens, France.

出版信息

Antimicrob Agents Chemother. 2010 Nov;54(11):4556-60. doi: 10.1128/AAC.01762-09. Epub 2010 Aug 23.

Abstract

The CMY-2, ACT-1, DHA-1, ACC-1, and FOX-1 enzymes are representative of five plasmid-mediated AmpC (pAmpC) β-lactamase clusters. Resistance to imipenem has been reported in Enterobacteriaceae as a result of pAmpC expression combined with decreased outer membrane permeability. The aim of this study was to determine the role of different pAmpCs in carbapenem resistance and to define the structure/activity relationship supporting carbapenemase activity. The ampC genes encoding the five pAmpCs and the chromosomal AmpC of Escherichia coli EC6, which was used as a reference cephalosporinase, were cloned and introduced into wild-type E. coli TOP10 and OmpC/OmpF porin-deficient E. coli HB4 strains. The MICs of β-lactams for the recombinant strains revealed that CMY-2, ACT-1, and DHA-1 β-lactamases conferred a high level of resistance to ceftazidime and cefotaxime once expressed in E. coli TOP10 and reduced significantly the susceptibility to imipenem once expressed in E. coli HB4. In contrast, FOX-1 and ACC-1 enzymes did not confer resistance to imipenem. Biochemical analysis showed that CMY-2 β-lactamase and, to a lesser extent, ACT-1 exhibited the highest catalytic efficiency toward imipenem and showed low K(m) values. A modeling study revealed that the large R2 binding site of these two enzymes may support the carbapenemase activity. Therefore, CMY-2-type, ACT-1-type, and DHA-1-type β-lactamases may promote the emergence of carbapenem resistance in porin-deficient clinical isolates.

摘要

CMY-2、ACT-1、DHA-1、ACC-1 和 FOX-1 酶代表了五个质粒介导的 AmpC(pAmpC)β-内酰胺酶簇。肠杆菌科对亚胺培南的耐药性是由于 pAmpC 表达与外膜通透性降低相结合所致。本研究旨在确定不同 pAmpC 在碳青霉烯类耐药中的作用,并定义支持碳青霉烯酶活性的结构/活性关系。克隆并引入野生型大肠杆菌 TOP10 和 OmpC/OmpF 孔缺陷大肠杆菌 HB4 菌株的编码五种 pAmpC 和大肠杆菌 EC6 染色体 AmpC 的 ampC 基因,该基因用作参考头孢菌素酶。重组菌株的β-内酰胺 MIC 表明,CMY-2、ACT-1 和 DHA-1β-内酰胺酶一旦在大肠杆菌 TOP10 中表达,就会赋予头孢他啶和头孢噻肟高度耐药性,并显著降低在大肠杆菌 HB4 中表达时对亚胺培南的敏感性。相比之下,FOX-1 和 ACC-1 酶不会赋予对亚胺培南的耐药性。生化分析表明,CMY-2β-内酰胺酶和在较小程度上 ACT-1 对亚胺培南表现出最高的催化效率,并表现出低 K(m) 值。建模研究表明,这两种酶的大 R2 结合位点可能支持碳青霉烯酶活性。因此,CMY-2 型、ACT-1 型和 DHA-1 型β-内酰胺酶可能促进孔缺陷临床分离株中碳青霉烯类耐药的出现。

相似文献

1
Phenotypic and biochemical comparison of the carbapenem-hydrolyzing activities of five plasmid-borne AmpC β-lactamases.
Antimicrob Agents Chemother. 2010 Nov;54(11):4556-60. doi: 10.1128/AAC.01762-09. Epub 2010 Aug 23.
2
Contribution of asparagine 346 residue to the carbapenemase activity of CMY-2 β-lactamase.
FEMS Microbiol Lett. 2013 Aug;345(2):147-53. doi: 10.1111/1574-6968.12199. Epub 2013 Jul 1.
5
Contribution of extended-spectrum AmpC (ESAC) beta-lactamases to carbapenem resistance in Escherichia coli.
FEMS Microbiol Lett. 2008 May;282(2):238-40. doi: 10.1111/j.1574-6968.2008.01126.x. Epub 2008 Mar 27.
6
Hydrolysis spectrum extension of CMY-2-like β-lactamases resulting from structural alteration in the Y-X-N loop.
Antimicrob Agents Chemother. 2012 Mar;56(3):1151-6. doi: 10.1128/AAC.05630-11. Epub 2012 Jan 9.
7
Acquisition of Carbapenem Resistance by Plasmid-Encoded-AmpC-Expressing Escherichia coli.
Antimicrob Agents Chemother. 2016 Dec 27;61(1). doi: 10.1128/AAC.01413-16. Print 2017 Jan.
10
Plasmid-Encoded AmpC and Extended-Spectrum Beta-Lactamases in Multidrug-Resistant Isolated from Piglets in Portugal.
Microb Drug Resist. 2021 Dec;27(12):1742-1749. doi: 10.1089/mdr.2020.0387. Epub 2021 Jun 29.

引用本文的文献

1
Evolution of carbapenemase activity in the class C β-lactamase ADC-1.
mBio. 2025 Jun 11;16(6):e0018525. doi: 10.1128/mbio.00185-25. Epub 2025 Apr 28.
3
Interplay between porin deficiency, fitness, and virulence in carbapenem-non-susceptible Pseudomonas aeruginosa and Enterobacteriaceae.
PLoS Pathog. 2025 Feb 7;21(2):e1012902. doi: 10.1371/journal.ppat.1012902. eCollection 2025 Feb.
5
Detection of AmpC β-lactamases in gram-negative bacteria.
Heliyon. 2022 Dec 12;8(12):e12245. doi: 10.1016/j.heliyon.2022.e12245. eCollection 2022 Dec.
6
Class C β-Lactamases: Molecular Characteristics.
Clin Microbiol Rev. 2022 Sep 21;35(3):e0015021. doi: 10.1128/cmr.00150-21. Epub 2022 Apr 18.
7
Extraintestinal Pathogenic : Beta-Lactam Antibiotic and Heavy Metal Resistance.
Antibiotics (Basel). 2022 Mar 1;11(3):328. doi: 10.3390/antibiotics11030328.
9
β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates.
RSC Med Chem. 2021 Aug 4;12(10):1623-1639. doi: 10.1039/d1md00200g. eCollection 2021 Oct 20.
10
In Silico Analysis of Extended-Spectrum β-Lactamases in Bacteria.
Antibiotics (Basel). 2021 Jul 4;10(7):812. doi: 10.3390/antibiotics10070812.

本文引用的文献

1
Role of the Ser-287-Asn replacement in the hydrolysis spectrum extension of AmpC beta-lactamases in Escherichia coli.
Antimicrob Agents Chemother. 2009 Jan;53(1):323-6. doi: 10.1128/AAC.00608-08. Epub 2008 Nov 10.
2
Emergence of imipenem resistance in clinical Escherichia coli during therapy.
Int J Antimicrob Agents. 2008 Dec;32(6):534-7. doi: 10.1016/j.ijantimicag.2008.06.012. Epub 2008 Sep 4.
3
Structure of the plasmid-mediated class C beta-lactamase ACT-1.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 May 1;64(Pt 5):334-7. doi: 10.1107/S1744309108008531. Epub 2008 Apr 5.
4
Contribution of extended-spectrum AmpC (ESAC) beta-lactamases to carbapenem resistance in Escherichia coli.
FEMS Microbiol Lett. 2008 May;282(2):238-40. doi: 10.1111/j.1574-6968.2008.01126.x. Epub 2008 Mar 27.
5
Molecular characterization of AmpC-producing Escherichia coli clinical isolates recovered in a French hospital.
J Antimicrob Chemother. 2008 Mar;61(3):498-503. doi: 10.1093/jac/dkm538. Epub 2008 Feb 4.
6
Extension of the hydrolysis spectrum of AmpC beta-lactamase of Escherichia coli due to amino acid insertion in the H-10 helix.
J Antimicrob Chemother. 2007 Sep;60(3):490-4. doi: 10.1093/jac/dkm227. Epub 2007 Jun 22.
7
8
Structural basis for the extended substrate spectrum of CMY-10, a plasmid-encoded class C beta-lactamase.
Mol Microbiol. 2006 May;60(4):907-16. doi: 10.1111/j.1365-2958.2006.05146.x.
9
Kinetic properties of four plasmid-mediated AmpC beta-lactamases.
Antimicrob Agents Chemother. 2005 Oct;49(10):4240-6. doi: 10.1128/AAC.49.10.4240-4246.2005.
10
Promoter sequences necessary for high-level expression of the plasmid-associated ampC beta-lactamase gene blaMIR-1.
Antimicrob Agents Chemother. 2004 Nov;48(11):4177-82. doi: 10.1128/AAC.48.11.4177-4182.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验