Department of Dermatology, Medical University of Graz, Graz, Austria.
J Eur Acad Dermatol Venereol. 2011 May;25(5):554-8. doi: 10.1111/j.1468-3083.2010.03834.x. Epub 2010 Aug 23.
In vivo reflectance confocal microscopy (RCM) has been shown to be a valuable imaging tool in the diagnosis of melanocytic skin tumours. However, diagnostic image analysis performed by automated systems is to date quite rare.
In this study, we investigated the applicability of an automated image analysis system using a machine learning algorithm on diagnostic discrimination of benign and malignant melanocytic skin tumours in RCM.
Overall, 16,269 RCM tumour images were evaluated. Image analysis was based on features of the wavelet transform. A learning set of 6147 images was used to establish a classification tree algorithm and an independent test set of 10, 122 images was applied to validate the tree model (grouping method 1). Additionally, randomly generated 'new' learning and test sets, tumour images only and different skin layers were evaluated (grouping method 2, 3 and 4).
The classification tree analysis correctly classified 93.60% of the melanoma and 90.40% of the nevi images of the learning set. When the classification tree was applied to the independent test set 46.71 ± 19.97% (range 7.81-83.87%) of the tumour images in benign melanocytic skin lesions were classified as 'malignant', in contrast to 55.68 ± 14.58% (range 30.65-83.59%; t-test: P < 0.036) in malignant melanocytic skin lesions (grouping method 1). Further investigations could not improve the results significantly (grouping method 2, 3 and 4).
The automated RCM image analysis procedure holds promise for further investigations. However, to date our system cannot be applied to routine skin tumour screening.
体内反射共聚焦显微镜(RCM)已被证明是诊断黑素细胞皮肤肿瘤的一种有价值的成像工具。然而,到目前为止,自动化系统进行的诊断图像分析相当少见。
本研究旨在探讨使用机器学习算法的自动化图像分析系统在 RCM 中对良性和恶性黑素细胞皮肤肿瘤进行诊断鉴别诊断的适用性。
总共评估了 16269 个 RCM 肿瘤图像。图像分析基于小波变换的特征。使用 6147 个图像的学习集来建立分类树算法,并将 10122 个独立测试集应用于验证树模型(分组方法 1)。此外,还评估了随机生成的“新”学习和测试集、肿瘤图像仅和不同皮肤层(分组方法 2、3 和 4)。
分类树分析正确分类了学习集中 93.60%的黑素瘤和 90.40%的痣图像。当将分类树应用于独立测试集时,良性黑素细胞性皮肤病变中的 46.71±19.97%(范围 7.81-83.87%)的肿瘤图像被分类为“恶性”,而恶性黑素细胞性皮肤病变中的 55.68±14.58%(范围 30.65-83.59%;t 检验:P<0.036)(分组方法 1)。进一步的研究并没有显著提高结果(分组方法 2、3 和 4)。
自动化 RCM 图像分析程序具有进一步研究的潜力。然而,到目前为止,我们的系统还不能应用于常规的皮肤肿瘤筛查。