Suppr超能文献

人工智能在黑色素瘤的非侵入性检测中的应用

Artificial Intelligence in the Non-Invasive Detection of Melanoma.

作者信息

İsmail Mendi Banu, Kose Kivanc, Fleshner Lauren, Adam Richard, Safai Bijan, Farabi Banu, Atak Mehmet Fatih

机构信息

Department of Dermatology, Niğde Ömer Halisdemir University, Niğde 51000, Turkey.

Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA.

出版信息

Life (Basel). 2024 Dec 4;14(12):1602. doi: 10.3390/life14121602.

Abstract

Skin cancer is one of the most prevalent cancers worldwide, with increasing incidence. Skin cancer is typically classified as melanoma or non-melanoma skin cancer. Although melanoma is less common than basal or squamous cell carcinomas, it is the deadliest form of cancer, with nearly 8300 Americans expected to die from it each year. Biopsies are currently the gold standard in diagnosing melanoma; however, they can be invasive, expensive, and inaccessible to lower-income individuals. Currently, suspicious lesions are triaged with image-based technologies, such as dermoscopy and confocal microscopy. While these techniques are useful, there is wide inter-user variability and minimal training for dermatology residents on how to properly use these devices. The use of artificial intelligence (AI)-based technologies in dermatology has emerged in recent years to assist in the diagnosis of melanoma that may be more accessible to all patients and more accurate than current methods of screening. This review explores the current status of the application of AI-based algorithms in the detection of melanoma, underscoring its potential to aid dermatologists in clinical practice. We specifically focus on AI application in clinical imaging, dermoscopic evaluation, algorithms that can distinguish melanoma from non-melanoma skin cancers, and in vivo skin imaging devices.

摘要

皮肤癌是全球最常见的癌症之一,发病率呈上升趋势。皮肤癌通常分为黑色素瘤或非黑色素瘤皮肤癌。虽然黑色素瘤比基底细胞癌或鳞状细胞癌少见,但它是最致命的癌症形式,预计每年有近8300名美国人死于该病。活检是目前诊断黑色素瘤的金标准;然而,活检可能具有侵入性、费用高昂,且低收入人群难以承受。目前,利用基于图像的技术,如皮肤镜检查和共聚焦显微镜检查,对可疑病变进行分类。虽然这些技术很有用,但不同使用者之间存在很大差异,而且皮肤科住院医师在如何正确使用这些设备方面接受的培训很少。近年来,基于人工智能(AI)的技术在皮肤科领域出现,以协助诊断黑色素瘤,这对所有患者来说可能更容易获得,并且比目前的筛查方法更准确。这篇综述探讨了基于AI的算法在黑色素瘤检测中的应用现状,强调了其在临床实践中帮助皮肤科医生的潜力。我们特别关注AI在临床成像、皮肤镜评估、区分黑色素瘤与非黑色素瘤皮肤癌的算法以及体内皮肤成像设备中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec75/11678477/4739b2ea98ce/life-14-01602-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验