Suppr超能文献

NHE3 的活性依赖于其细胞内胞质区域 N 端的直接磷酸肌醇结合。

NHE3 activity is dependent on direct phosphoinositide binding at the N terminus of its intracellular cytosolic region.

机构信息

Department of Physiology and Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

出版信息

J Biol Chem. 2010 Nov 5;285(45):34566-78. doi: 10.1074/jbc.M110.165712. Epub 2010 Aug 24.

Abstract

The small intestinal BB Na(+)/H(+) antiporter NHE3 accounts for the majority of intestinal sodium and water absorption. It is highly regulated with both postprandial inhibition and stimulation sequentially occurring. Phosphatidylinositide 4,5-bisphosphate (PI(4,5)P(2)) and phosphatidylinositide 3,4,5-trisphosphate (PI(3,4,5)P(3)) binding is involved with regulation of multiple transporters. We tested the hypothesis that phosphoinositides bind NHE3 under basal conditions and are necessary for its acute regulation. His(6) proteins were made from the NHE3 C-terminal region divided into four parts as follows: F1 (amino acids 475-589), F2 (amino acids 590-667), F3 (amino acids 668-747), and F4 (amino acids 748-832) and purified by a nickel column. Mutations were made in the F1 region of NHE3 and cloned in pet30a and pcDNA3.1 vectors. PI(4,5)P(2) and PI(3,4,5)P(3) bound only to the NHE3 F1 fusion protein (amino acids 475-589) on liposomal pulldown assays. Mutations were made in the putative lipid binding region of the F1 domain and studied for alterations in lipid binding and Na(+)/H(+) exchange as follows: Y501A/R503A/K505A; F509A/R511A/R512A; R511L/R512L; R520/FR527F; and R551L/R552L. Our results indicate the following. 1) The F1 domain of the NHE3 C terminus has phosphoinositide binding regions. 2) Mutations of these regions alter PI(4,5)P(2) and PI(3,4,5)P(3) binding and basal NHE3 activity. 3) The magnitude of serum stimulation of NHE3 correlates with PI(4,5)P(2) and PI(3,4,5)P(3) binding of NHE3. 4) Wortmannin inhibition of PI3K did not correlate with PI(4,5)P(2) or PI(3,4,5)P(3) binding of NHE3. Two functionally distinct phosphoinositide binding regions (Tyr(501)-Arg(512) and Arg(520)-Arg(552)) are present in the NHE3 F1 domain; both regions are important for serum stimulation, but they display differences in phosphoinositide binding, and the latter but not the former alters NHE3 surface expression.

摘要

小肠 BB Na(+)/H(+) 反向转运蛋白 NHE3 负责大部分肠道钠和水的吸收。它受到高度调节,先后发生餐后抑制和刺激。磷脂酰肌醇 4,5-二磷酸(PI(4,5)P(2)) 和磷脂酰肌醇 3,4,5-三磷酸(PI(3,4,5)P(3)) 的结合参与了多种转运蛋白的调节。我们检验了以下假设:在基础条件下,磷酸肌醇与 NHE3 结合,并对其急性调节是必要的。His(6) 蛋白由 NHE3 C 端区域分成四个部分制成:F1(氨基酸 475-589)、F2(氨基酸 590-667)、F3(氨基酸 668-747)和 F4(氨基酸 748-832),并通过镍柱进行纯化。在 NHE3 的 F1 区域进行突变,并在 pet30a 和 pcDNA3.1 载体中克隆。PI(4,5)P(2) 和 PI(3,4,5)P(3) 仅与脂质体下拉测定中的 NHE3 F1 融合蛋白(氨基酸 475-589)结合。在假定的 F1 结构域脂质结合区域进行突变,并研究脂质结合和 Na(+)/H(+) 交换的变化如下:Y501A/R503A/K505A;F509A/R511A/R512A;R511L/R512L;R520/FR527F;和 R551L/R552L。我们的结果表明:1)NHE3 C 端的 F1 结构域具有磷酸肌醇结合区域。2)这些区域的突变改变了 PI(4,5)P(2)和 PI(3,4,5)P(3)的结合和基础 NHE3 活性。3)血清刺激 NHE3 的幅度与 NHE3 的 PI(4,5)P(2)和 PI(3,4,5)P(3)结合相关。4)wortmannin 抑制 PI3K 与 NHE3 的 PI(4,5)P(2)或 PI(3,4,5)P(3)结合无关。NHE3 F1 结构域中存在两个具有不同功能的磷酸肌醇结合区域(Tyr(501)-Arg(512)和 Arg(520)-Arg(552));这两个区域对血清刺激都很重要,但它们在磷酸肌醇结合方面存在差异,后者而非前者改变 NHE3 的表面表达。

相似文献

1
NHE3 activity is dependent on direct phosphoinositide binding at the N terminus of its intracellular cytosolic region.
J Biol Chem. 2010 Nov 5;285(45):34566-78. doi: 10.1074/jbc.M110.165712. Epub 2010 Aug 24.
6
NHE3 mobility in brush borders increases upon NHERF2-dependent stimulation by lyophosphatidic acid.
J Cell Sci. 2010 Jul 15;123(Pt 14):2434-43. doi: 10.1242/jcs.056713. Epub 2010 Jun 22.
9
PDZ domain-dependent regulation of NHE3 protein by both internal Class II and C-terminal Class I PDZ-binding motifs.
J Biol Chem. 2017 May 19;292(20):8279-8290. doi: 10.1074/jbc.M116.774489. Epub 2017 Mar 10.
10
Na(+)/H(+) exchanger 3 is in large complexes in the center of the apical surface of proximal tubule-derived OK cells.
Am J Physiol Cell Physiol. 2002 Sep;283(3):C927-40. doi: 10.1152/ajpcell.00613.2001.

引用本文的文献

1
Structural basis of autoinhibition of the human NHE3-CHP1 complex.
Sci Adv. 2022 May 27;8(21):eabn3925. doi: 10.1126/sciadv.abn3925. Epub 2022 May 25.
4
A common NHE3 single-nucleotide polymorphism has normal function and sensitivity to regulatory ligands.
Am J Physiol Gastrointest Liver Physiol. 2017 Aug 1;313(2):G129-G137. doi: 10.1152/ajpgi.00044.2017. Epub 2017 May 11.
5
Phosphorylation of NHE3-S regulates NHE3 activity through the formation of multiple signaling complexes.
Mol Biol Cell. 2017 Jul 1;28(13):1754-1767. doi: 10.1091/mbc.E16-12-0862. Epub 2017 May 11.
6
The Na+/H+ Exchanger-3 (NHE3) Activity Requires Ezrin Binding to Phosphoinositide and Its Phosphorylation.
PLoS One. 2015 Jun 4;10(6):e0129306. doi: 10.1371/journal.pone.0129306. eCollection 2015.
7
Nonsynonymous single nucleotide polymorphisms of NHE3 differentially decrease NHE3 transporter activity.
Am J Physiol Cell Physiol. 2015 May 1;308(9):C758-66. doi: 10.1152/ajpcell.00421.2014. Epub 2015 Feb 25.
9
Molecular analysis of protein-phosphoinositide interactions.
Curr Top Microbiol Immunol. 2012;362:111-26. doi: 10.1007/978-94-007-5025-8_6.
10
Unconventional chemiosmotic coupling of NHA2, a mammalian Na+/H+ antiporter, to a plasma membrane H+ gradient.
J Biol Chem. 2012 Oct 19;287(43):36239-50. doi: 10.1074/jbc.M112.403550. Epub 2012 Sep 4.

本文引用的文献

1
Novel phorbol ester-binding motif mediates hormonal activation of Na+/H+ exchanger.
J Biol Chem. 2010 Aug 20;285(34):26652-61. doi: 10.1074/jbc.M110.130120. Epub 2010 Jun 15.
2
Channelopathies linked to plasma membrane phosphoinositides.
Pflugers Arch. 2010 Jul;460(2):321-41. doi: 10.1007/s00424-010-0828-y. Epub 2010 Apr 16.
4
NHE3 function and phosphorylation are regulated by a calyculin A-sensitive phosphatase.
Am J Physiol Renal Physiol. 2010 Mar;298(3):F745-53. doi: 10.1152/ajprenal.00182.2009. Epub 2009 Dec 16.
5
Cell biology. Evolving cell signals.
Science. 2009 Sep 25;325(5948):1635-6. doi: 10.1126/science.1180331.
6
NHE3 regulatory complexes.
J Exp Biol. 2009 Jun;212(Pt 11):1638-46. doi: 10.1242/jeb.028605.
7
Phosphoinositide regulation of non-canonical transient receptor potential channels.
Cell Calcium. 2009 Jun;45(6):554-65. doi: 10.1016/j.ceca.2009.03.011. Epub 2009 Apr 18.
8
The phosphatase inhibitor, okadaic acid, strongly protects primary rat cortical neurons from lethal oxygen-glucose deprivation.
Biochem Biophys Res Commun. 2009 Jan 16;378(3):394-8. doi: 10.1016/j.bbrc.2008.11.036. Epub 2008 Nov 19.
9
Physiologic regulation of the epithelial sodium channel by phosphatidylinositides.
Curr Opin Nephrol Hypertens. 2008 Sep;17(5):533-40. doi: 10.1097/MNH.0b013e328308fff3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验