Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
Cancer Res. 2010 Sep 1;70(17):6715-24. doi: 10.1158/0008-5472.CAN-10-1377. Epub 2010 Aug 24.
Epithelial-mesenchymal transition (EMT) is a key event in the generation of invasive tumor cells. A hallmark of EMT is the repression of E-cadherin expression, which is regulated by various signal transduction pathways including extracellular signal-regulated kinase (ERK) and Wnt. These pathways are highly interconnected via multiple coupled feedback loops (CFL). As the function of such coupled feedback regulations is difficult to analyze experimentally, we used a systems biology approach where computational models were designed to predict biological effects that result from the complex interplay of CFLs. Using epidermal growth factor (EGF) and Wnt as input and E-cadherin transcriptional regulation as output, we established an ordinary differential equation model of the ERK and Wnt signaling network containing six feedback links and used extensive computer simulations to analyze the effects of these feedback links in isolation and different combinations. The results show that the feedbacks can generate a rich dynamic behavior leading to various dose-response patterns and have a decisive role in determining network responses to EGF and Wnt. In particular, we made two important findings: first, that coupled positive feedback loops composed of phosphorylation of Raf kinase inhibitor RKIP by ERK and transcriptional repression of RKIP by Snail have an essential role in causing a switch-like behavior of E-cadherin expression; and second, that RKIP expression inhibits EMT progression by preventing E-cadherin suppression. Taken together, our findings provide us with a system-level understanding of how RKIP can regulate EMT progression and may explain why RKIP is downregulated in so many metastatic cancer cells.
上皮-间质转化(EMT)是产生侵袭性肿瘤细胞的关键事件。EMT 的一个标志是 E-钙黏蛋白表达的抑制,其受到包括细胞外信号调节激酶(ERK)和 Wnt 在内的各种信号转导途径的调节。这些途径通过多个耦合反馈环(CFL)高度相互连接。由于这种耦合反馈调节的功能很难通过实验进行分析,我们使用了系统生物学方法,其中设计了计算模型来预测 CFL 复杂相互作用产生的生物学效应。我们使用表皮生长因子(EGF)和 Wnt 作为输入,E-钙黏蛋白转录调控作为输出,建立了包含六个反馈链接的 ERK 和 Wnt 信号网络的常微分方程模型,并使用广泛的计算机模拟来分析这些反馈链接在单独和不同组合中的影响。结果表明,反馈可以产生丰富的动态行为,导致各种剂量反应模式,并在决定网络对 EGF 和 Wnt 的反应方面起着决定性作用。特别是,我们得出了两个重要发现:第一,ERK 磷酸化 Raf 激酶抑制剂 RKIP 和 Snail 转录抑制 RKIP 组成的耦合正反馈环在导致 E-钙黏蛋白表达的开关样行为中起着至关重要的作用;第二,RKIP 表达通过防止 E-钙黏蛋白抑制来抑制 EMT 进展。总之,我们的研究结果为我们提供了对 RKIP 如何调节 EMT 进展的系统理解,并可能解释为什么 RKIP 在如此多的转移性癌细胞中下调。